
Boosting with the L2-Loss: Regression and Classification

Peter Bühlmann
ETH Zürich

Bin Yu
University of California, Berkeley

June 2002
(Revised Version)

Abstract

This paper investigates a computationally simple variant of boosting, L2Boost,
which is constructed from a functional gradient descent algorithm with the L2-loss
function. As other boosting algorithms, L2Boost uses many times in an iterative
fashion a pre-chosen fitting method, called the learner. Based on the explicit expres-
sion of refitting of residuals of L2Boost, the case with (symmetric) linear learners is
studied in detail in both regression and classification. In particular, with the boosting
iteration m working as the smoothing or regularization parameter, a new exponential
bias-variance trade off is found with the variance (complexity) term increasing very
slowly as m tends to infinity. When the learner is a smoothing spline, an optimal
rate of convergence result holds for both regression and classification and the boosted
smoothing spline even adapts to higher order, unknown smoothness. Moreover, a sim-
ple expansion of a (smoothed) 0-1 loss function is derived to reveal the importance of
the decision boundary, bias reduction, and impossibility of an additive bias-variance
decomposition in classification. Finally, simulation and real data set results are ob-
tained to demonstrate the attractiveness of L2Boost. In particular, we demonstrate
that L2Boosting with a novel component-wise cubic smoothing spline is both practical
and effective in the presence of high-dimensional predictors.

1 Introduction

Boosting is one of the most successful and practical methods that recently come from the
machine learning community. Since its inception in 1990 (Schapire, 1990; Freund, 1995;
Freund and Schapire, 1996), it has been tried on an amazing array of data sets. The
improved performance through boosting of a fitting method, called the learner, has been
impressive, and it seems to be associated with boosting’s resistance to overfitting. The
burning question is why.

The rationale behind boosting separates itself from the traditional statistical proce-
dures. It starts with a sensible estimator or classifier, the learner, and seeks its improve-
ments iteratively based on its performance on the training data set. The possibility of
this boosting procedure comes with the availability of large data sets where one can easily
set aside part of it as the test set (or use cross validation based on random splits). It
seemingly bypasses the need to get a model for the data and the pursuit of the optimal
solution under this model as the common practice in traditional statistics. For large data
set problems with high-dimensional predictors, a good model for the problem is hard to
come by, but a sensible procedure is not. And this may explain the empirical success of
boosting on large, high-dimensional data sets. After much work on bounding the test set

1

error (generalization error) of a boosted procedure via the VC dimensions and the distri-
bution of so-called margins (Schapire et al., 1998), some recent developments on boosting
have been on the gradient-descent view of boosting. They are the results of efforts of
many researchers (Breiman, 1999; Mason et al., 1999; Friedman et al., 2000; Collins et al.,
2000). This gradient descent view connects boosting to the more common optimization
view of statistical inference, and its most obvious consequence has been the emergence of
many variants of the original AdaBoost, under various loss or objective functions (Mason
et al., 1999; Friedman et al., 2000; Friedman, 2001). Even though a satisfactory expla-
nation on why boosting works does not follow directly from this gradient descent view,
some of the new boosting variants are more easily accessible for analysis. In this paper,
we take advantage of this new analytic possibility on L2-boosting procedures to build our
case for understanding boosting both in regression and two-class classification. It is worth
pointing out that L2Boost is studied here also as a procedure yielding competitive sta-
tistical results in regression and classification, in addition to its computational simplicity
and analytical tractability.

After a brief overview of boosting from the gradient descent point of view in Section
2, Section 3 deals with the case of (symmetric) linear learners in regression, building on
the known fact that L2Boost is a stagewise refitting of the residuals (cf. Friedman, 2001).
We derive two main rigorous results:

(i) With the boosting iteration m working as the smoothing or regularization parameter,
a new exponential bias-variance trade off is found. When the iteration m increases
by 1, one more term is added in the fitted procedure, but due to the dependence
of this new term on the previous terms, the “complexity” of the fitted procedure
is not increased by a constant amount as we got used to in linear regression, but
an exponentially diminishing amount as m gets large. At the iteration limit, the
complexity or variance term is bounded by the noise variance in the regression model.

(ii) When the learner is a smoothing spline, L2Boost achieves the optimal rate of conver-
gence for one-dimensional function estimation. Moreover, this boosted smoothing
spline adapts to higher order, unknown smoothness.

Item (i) partially explains the “overfitting-resistance” mystery of boosting. The phe-
nomenon is radically different from the well-known algebraic bias-variance trade-off in
nonparametric regression. Item (ii) shows an interesting result about boosting in adaptive
estimation: even when smoothness is unknown, L2Boost achieves the optimal (minimax)
rate of convergence.

Section 4 proposes L2Boost with a novel component-wise smoothing spline learner as
a very effective procedure to carry out boosting for high dimensional regression problems
with continuous predictors. It is shown to outperform L2Boost with stumps (tree with two
terminal nodes) and other more traditional competitors, particularly when the predictor
space is very high-dimensional.

Section 5 deals with classification, first with the two class problem and then the multi-
class problem using the “one against all” approach. The optimality in item (ii) above
also holds for classification: L2Boost achieves the optimal (minimax) rate of convergence
to the Bayes risk over an appropriate smoothness function class, the risk of the best
among all classification procedures. Furthermore in Section 6, we approximate the 0-1
loss function via a smoothed version to show that the test set (generalization) error of any
procedure is approximately, in addition to the Bayes risk, a sum of tapered moments. As

2

a consequence of this approximation, we get more insight into why bias plays a bigger role
in 0-1 loss classification than in L2-regression, why there is even more “resistance against
overfitting” in classification than regression and why previous attempts were not successful
at decomposing the test set (generalization) error into additive bias and variance terms
(cf. Geman et al. 1992; Breiman, 1998, and references therein).

In Section 7, we support the theory and explanations for classification by simulated
and real data sets which demonstrate the attractiveness of L2Boost. Finally, Section 8
contains a discussion on the role of the learner and a summary of the paper.

2 Boosting: stagewise functional gradient descent

The boosting algorithms can be seen as functional gradient descent techniques. The task
is to estimate the function F : R

d → R, minimizing an expected cost

E[C(Y, F (X))], C(·, ·) : R × R → R
+ (1)

based on data (Yi, Xi) (i = 1, . . . n). We consider here both cases where the univariate
response Y is continuous (regression problem) or discrete (classification problem), since
boosting is potentially useful in both cases; X denotes here a d-dimensional predictor
variable. The cost function C(·, ·) is assumed to be smooth and convex in the second
argument to ensure that the gradient method works well. The most prominent examples
are:

C(y, f) = exp(yf) with y ∈ {−1, 1}: AdaBoost cost function,

C(y, f) = log2(1 + exp(−2yf)) with y ∈ {−1, 1}: LogitBoost cost function,

C(y, f) = (y − f)2/2 with y ∈ R or ∈ {−1, 1}: L2Boost cost function. (2)

The population minimizers of (1) are then (cf. Friedman et al., 2000)

F (x) =
1

2
log(

P[Y = 1|X = x]

P[Y = −1|X = x]
) for AdaBoost and LogitBoost cost,

F (x) = E[Y |X = x] for L2Boost cost. (3)

Estimation of such an F (·) from data can be done via a constrained minimization of the
empirical risk

n−1
n

∑

i=1

C(Yi, F (Xi)). (4)

by applying functional gradient descent. This gradient descent view has been recognized
and refined by various authors including Breiman (1999), Mason et al. (1999), Friedman
et al. (2000), Friedman (2001). In summary, the minimizer of (4) is imposed to sat-
isfy a “smoothness” (or “regularization”) constraint in terms of an additive expansion of
(“simple”) learners (fitted functions)

h(x, θ̂), x ∈ R
d,

where θ̂ is an estimated finite or infinite-dimensional parameter. For example, the learner
h(·, θ̂) could be a decision tree where θ̂ describes the axis to be split, the split points and

3

the fitted values for every terminal node (the constants in the piecewise constant fitted
function) How to fit h(x, θ) from data is part of the learner and can be done according to
a basis algorithm. For example, least squares fitting yields

θ̂U,X = argminθ

n
∑

i=1

(Ui − h(Xi; θ))2,

for some data (U,X) = {(Ui, Xi); i = 1, . . . , n}. The general description of functional
gradient descent is as follows (cf. Friedman, 2001).

Generic functional gradient descent

Step 1 (initialization). Given data {(Yi, Xi); i = 1, . . . , n}, fit a real-valued, (initial)
learner

F̂0(x) = h(x; θ̂Y,X).

When using least squares, θ̂Y,X = argminθ

∑n
i=1(Yi − h(Xi; θ))2. Set m = 0.

Step 2 (projecting gradient to learner). Compute the negative gradient vector

Ui = −
∂C(Yi, F)

∂F
|F=F̂m(Xi)

, i = 1, . . . , n,

evaluated at the current F̂m(·). Then, fit the real-valued learner to the gradient vector

f̂m+1(x) = h(x, θ̂U,X).

When using least squares, θ̂U,X = argminθ

∑n
i=1(Ui − h(Xi; θ))2.

Step 3 (line search). Do one-dimensional numerical search for the best step-size

ŵm+1 = argminw

n
∑

i=1

C(Yi, F̂m(Xi) + wm+1f̂m+1(Xi)).

Update,

F̂m+1(·) = F̂m(·) + ŵm+1f̂m+1(·).

Step 4 (iteration). Increase m by one and repeat Steps 2 and 3.

The learner h(x, θ̂U,X) in Step 2 can be viewed as an estimate of E[Ui|X = x] and
takes values in R, even in case of a classification problem with Yi in a finite set. We call
F̂m(·) the AdaBoost-, LogitBoost- or L2Boost-estimate, according to the implementing
cost function in (2).

L2Boost has a simple structure: the negative gradient in Step 2 is the classical residual
vector and the line search in Step 3 is trivial.

L2Boost algorithm

4

Step 1 (initialization). As in Step 1 of generic functional gradient descent, using a least
squares fit.

Step 2. Compute residuals Ui = Yi − F̂m(Xi) (i = 1, . . . , n) and fit the real-valued learner
to the current residuals by least squares as in Step 2 of the generic functional gradient
descent; the fit is denoted by f̂m+1(·).
Update

F̂m+1(·) = F̂m(·) + f̂m+1(·).

Step 3 (iteration). Increase iteration index m by one and repeat Step 2.

L2Boosting is thus nothing else than repeated least squares fitting of residuals (cf.
Friedman, 2001). With m = 1 (one boosting step), it has already been proposed by
Tukey (1977) under the name “twicing”.

For a continuous Y ∈ R, a regression estimate for E[Y |X = x] is directly given by
the L2Boost-estimate F̂m(·). For a two-class problem with Y ∈ {−1, 1}, a classifier under
equal misclassification costs is given by

sign(F̂m(x)) (5)

since E[Y |X = x] = P[Y = 1|X = x] − P[Y = −1|X = x]. AdaBoost- and LogitBoost-
estimates aim to estimate

F (x) =
1

2
log

(

P[Y = 1|X = x]

P[Y = −1|X = x]

)

.

Hence, an appropriate classifier is again given by (5).
Mason et al. (1999) and Collins et al. (2000) describe when boosting-type algorithms,

i.e. functional gradient descent, converge numerically. This tells us that, under certain
conditions, the test set (generalization) error for boosting eventually stabilizes. But it
doesn’t imply that the eventually stable solution is the best, or that overfitting could
happen long before reaching convergence. Indeed, we will show in Section 3 that L2Boost
with “contracting” linear learners converges to the fully saturated model, i.e. F̂∞(Xi) = Yi

for all i = 1, . . . , n, fitting the data exactly.
Obviously, L2Boost and other functional gradient descent methods depend on the

choice of the learner. As the boosting iteration runs, the boosted procedure has more
terms and hence becomes more complex. It is intuitively clear that L2boosting is not
worthwhile if the learner is already complex, say fitting many parameters, so that every
boosting iteration contributes to additional overfitting. We make this rigorous in Section 3
for linear learners. Thus, the learner in boosting should be “simple”: it typically involves
only few parameters and has low variance relative to bias. We say that such a learner is
weak, an informal terminology from machine learning. Weakness of a learner does depend
on the signal to noise ratio of the data: if the noise level is low, it is well known that a
statistical method has less a tendency to overfit. Of course, there are many possibilities
for choosing a weak learner: examples include stumps which are trees with two terminal
nodes only, smoothing methods with large amount of smoothing, or shrinking a learner
with a small shrinkage factor. Some illustrations are given in Sections 3.2.2, 4.2, 7 and 8.

5

3 L2Boosting with linear learners in regression

The nature of stagewise fitting is responsible to a large extent for boosting’s resistance to
overfitting. The same view has been expressed in Buja’s (2000) discussion of the Friedman
et al. (2000) paper. He made amply clear there that this stagewise fitting had gotten a
bad reputation among statisticians and did not get the attention it deserved. The success
of boosting definitely serves as an eye-opener for us to take a fresh look at stagewise
fitting.

3.1 Theory

Consider the regression model

Yi = f(xi) + εi, i = 1, . . . , n,

ε1, . . . , εn i.i.d. with E[εi] = 0, Var(εi) = σ2, (6)

where f(·) is a real-valued, typically nonlinear function, and the predictors xi ∈ R
d are

deterministic (e.g. conditioning on the design).
We can represent a learner, evaluated at the predictors x1, . . . , xn as an operator

S : R
n → R

n, mapping the responses Y1, . . . , Yn to some fitted values in R
n. The predictors

x1, . . . , xn are absorbed in the operator notation S. In the sequel, we often use the notation
Y for the vector (Y1, . . . , Yn)T , Fj for the vector (Fj(x1), . . . , Fj(xn))T and analogously
for fj; it should always be clear from the context whether we mean a single variable Y or
function Fj(·), or the vectors as above.

Proposition 1. The L2Boost estimate in iteration m can be represented as:

F̂m =

m
∑

j=0

S(I − S)jY = (I − (I − S)m+1)Y.

A proof is given in the Appendix. We define the boosting operator Bm : R
n → R

n by

BmY = F̂m.

Proposition 1 describes an explicit relationship between the boosting operator and the
learner S. We exploit this in the sequel.

We focus now on linear learners S. Examples include least squares fitting in linear
models, more general projectors to a given class of basis functions such as regression
splines, or smoothing operators such as kernel and smoothing spline estimators.

Proposition 2. Consider a linear learner S with eigenvalues {λk; k = 1, . . . , n}, based
on deterministic predictors x1, . . . , xn. Then, the eigenvalues of the L2Boost operator Bm

are {(1 − (1 − λk)
m+1; k = 1, . . . , n}.

Proof: This is a direct consequence of Proposition 1. 2

Our analysis will become even more transparent when specialized to the case where
S = ST is symmetric. An important example is the smoothing spline operator (see Wahba,
1990; Hastie and Tibshirani, 1990) which is a more data-adaptive smoothing technique
than say kernel with a global bandwidth. All eigenvalues of S are then real and S as well
as Bm can be diagonalized with an orthonormal transform,

Bm = UDmUT , Dm = diag(1 − (1 − λk)
m+1),

kth column-vector of U being the kth eigenvector of S to the eigenvalue λk. (7)

6

The matrix U is orthonormal, satisfying UU T = UT U = I.
We are now able to analyze a relevant generalization measure in this setting, the

(expected) mean squared error

MSE = n−1
n

∑

i=1

E[(F̂m(xi) − f(xi))
2], (8)

which averages over the observed predictors. Note that if the design is stochastic with
a probability distribution, the MSE measure above is asymptotically equivalent (as n →
∞) to the prediction (generalization) error E[(F̂m(X) − f(X))2], where X is a new test
observation from the design generating distribution but independent from the training set
and the expectation is over the training and test set. We show in Figure 1 the difference
between the two measures for a finite sample case.

Proposition 3. Consider a linear, symmetric learner S = ST with eigenvalues {λk; k =
1, . . . , n} and eigenvectors building the columns of the orthonormal matrix U . Assume
data being generated from the model (6) and denote by f = (f(x1), . . . , f(xn))T the vector
of the true regression function f(·) evaluated at xi’s. Then, the squared bias, variance and
averaged mean squared error for L2Boost are

bias2(m,S; f) = n−1
n

∑

i=1

(E[F̂m(xi)] − f(xi))
2 = n−1fT Udiag((1 − λk)

2m+2)UT f,

variance(m,S;σ2) = n−1
n

∑

i=1

Var(F̂m(xi)) = σ2n−1
n

∑

k=1

(1 − (1 − λk)
m+1)2,

MSE(m,S; f, σ2) = bias2(m,S; f) + variance(m,S;σ2).

A proof is given in the Appendix. Proposition 3 describes an exact result for the MSE
in terms of the chosen L2Boost procedure. It is clear that the iteration index m acts as a
“smoothing parameter” to control the bias and variance trade-off.

Given the underlying problem (i.e. f and σ2) and given a learner S (implying U and
the set of eigenvalues), we analyze the bias-variance trade-off as a function of boosting
iterations. For that purpose, we assume that all eigenvalues satisfy 0 < λk ≤ 1. An
important example for such a linear learner are cubic smoothing splines which have two
eigenvalues equal to one and all others strictly between zero and one: this will be treated
even in more detail in Section 3.2.

Theorem 1. Under the assumptions in Proposition 3 with 0 < λk ≤ 1, k = 1, . . . , n,

(1) bias2(m;S; f) decays exponentially fast with increasing m,
variance(m,S;σ2) exhibits exponentially small increase with increasing m, and
limm→∞ MSE(m,S; f, σ2) = σ2.

(2) Moreover, let µ = UT f = (µ1, ..., µn)T be the function vector in the linear space
spanned by column vectors of U (µ represents f in the coordinate-system of the
eigenvectors of S).
(i) If µ2

k/σ
2 > 1/(1−λk)

2−1 for all k with λk < 1, then boosting improves the MSE
over the linear learner S.
(ii) If λk < 1 for at least one k ∈ {1, . . . , n} (S is not the identity operator I), there
is an m, such that at the mth iteration, the boosting MSE is strictly lower than σ2.

7

boosting

m

ge
ne

ra
liz

at
io

n
sq

ua
re

d
er

ro
r

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

varying df

degrees of freedom

ge
ne

ra
liz

at
io

n
sq

ua
re

d
er

ro
r

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

Figure 1: Mean squared prediction error E[(Y − f̂(X))2] (solid line) and MSE criterion
from (8) (dotted line) from 100 simulations of model (11) with design uniformly distributed
on [−1/2, 1/2], each with n = 100. Left: L2Boost with cubic smoothing spline having
df=3, as a function of boosting iterations m. Right: Cubic smoothing spline for various
degrees of freedom (various amount of smoothing).

Assertion (1) is a direct consequence of Proposition 3. A proof of assertion (2) is given
in the Appendix.

Theorem 1 comes as a surprise: it shows a very interesting bias-variance trade-off that
has not been seen in the literature. As the boosting iteration (or smoothing parameter)
m varies, both the bias and variance (complexity) term change exponentially with the
bias decreasing exponentially fast and the variance increasing with exponentially dimin-
ishing terms eventually. This contrasts the standard algebraic trade-off commonly seen in
nonparametric estimation. Figure 1 illustrates the difference for a cubic smoothing spline
learner (for data from model (11) in Section 3.2.2). The exponential trade-off not only
gets very close to the optimal of the MSE of that from the smoothing splines (by varying
the smoothing parameter), but also stays really flat afterwards, due to the exponential
increase and decrease in the bias and variance terms. Condition µ2

k/σ
2 > 1/(1 − λk)

2 − 1
in part 2(i) can be interpreted as follows. A large left hand side µk/σ

2 mean that f is
relatively complex compared to the noise level σ2. A small right hand side 1/(1−λk)2−1
means that λk is small, that is, the learner employs very strong shrinkage or smoothing in
the kth eigenvector-direction, or the learner is actually weak in the kth direction. Thus,
for boosting to bring improvement, µk has to be large relative to the noise level σ2 and/or
λk is restricted to be sufficiently small. Hence we see improvements for boosting with
weak learners most of the time. The assertion in 2(ii) shows that boosting always beats
the unbiased estimator Y as does James-Stein estimator in the space spanned by U .

Boosting until theoretical convergence with m = ∞ is typically not a good advice:
the MSE with m = ∞ is not smaller than the noise level σ2. The reason is that boosting
infinitely often yields the fully saturated model which fits the data exactly. Therefore, one
should monitor an estimate of MSE, for example by using a test set or cross-validation.

8

Finally, boosting sometimes does not change the procedure at all.

Corollary 1. Under the assumptions in Proposition 3 with λk ∈ {0, 1}, k = 1, . . . , n, or
equivalently, S is a linear projection operator, Bm ≡ S for m = 1, 2,

The phenomenon in Theorem 1 generalizes qualitatively to higher order moments.

Theorem 2. Under the assumptions in Theorem 1 with 0 < λk ≤ 1, k = 1, . . . , n and
assuming E|ε1|

p < ∞ for p ∈ N,

n−1
n

∑

i=1

E[(F̂m(xi) − f(xi))
p] = E[εp

1] + O(exp(−Cm)) (m → ∞),

where C > 0 is a constant independent of m (but depending on n and p).

A proof is given in the Appendix. Theorem 2 will be used later to argue that the ex-
pected 0-1 loss in classification also exhibits only exponentially small amount of overfitting
as boosting iterations m → ∞.

3.2 Smoothing splines as learners

3.2.1 Theory

A special class of symmetric linear learners are the smoothing spline operators when the
predictors are one-dimensional. Denote the function class of the νth order smoothness,
defined on an interval [a, b], as

W
(ν)
2 = {f : f (ν − 1)-times continuously differentiable and

∫ b

a
[f (ν)(x)]2dx < ∞}. (9)

The space W
(ν)
2 is also known as Sobolev space. Let SY = gr be the smoothing spline

solution to the penalized least squares problem

gr = gr(λ) = argmin
f∈W

(r)
2

1

n

∑

i

[Yi − f(xi)]
2 + λ

∫

[f (r)(x)]2dx (10)

Theorem 3. (Optimality of L2Boost for smoothing splines). Consider the model in (6)
with xi ∈ R. Suppose S is a smoothing spline learner gr(λ0) of degree r corresponding to

a fixed smoothing parameter λ0. If the true function f is in W
(ν)
2 with ν ≥ r (ν, r ∈ N),

then there is an m = m(n) = O(n2r/(2ν+1)) → ∞ such that F̂m(n) achieves the optimal

minimax rate n−2ν/(2ν+1) of the (smoother than degree r) function class W
(ν)
2 in terms of

MSE as defined in (8).

A proof is given in the Appendix. This result states that boosting smoothing splines
is minimax optimal and also adapts to higher order smoothness: even if the smoothing
spline learner has only degree r, we can adapt to higher order smoothness ν and achieve
the optimal MSE rate. Interestingly, any fixed smoothing parameter λ0 of the smoothing
spline learner can be used: from the asymptotic view, this means that the smoothing
parameter λ0 is large, i.e. a smoothing spline learner learner with low variance.

Gu (1987) analyzes twicing (m = 1) and shows that twicing can adapt to a higher
order smoothness ν ≤ 2r. With boosting we can adapt to an arbitrarily higher order

9

smoothness since we can refit as many times as we want. For cubic smoothing spline
learners with r = 2, the optimal rate n−4/5 is achieved by m = O(n4/5). If the underlying
smoothness is say ν = 3 > 2 = r, then the boosted cubic smoothing spline can achieve
the optimal rate n−6/7 for the smoother class with m = O(n4/7). In practice, the data
driven “optimal” boosting iteration m is selected either through a fixed test set or via
cross validation. We note here that boosting also adapts to lower order smoothness ν < r.
But this is also true for smoothing splines (without boosting). Hence, boosting is not
offering more for this case.

For a given smoothness ν, both the ordinary smoothing spline (with r = ν) and
boosting achieve the optimal rate, but they trade off bias and variance along different
regularization paths. As mentioned already, the advantage of the new exponential trade-
off in boosting is the flatter near-optimal region for the optimal smoothing parameter (or
boosting iteration). An example was shown in Figure 1 with simulated data from the next
Section.

3.2.2 Simulation results with cubic smoothing spline as learners

The relevance of the theoretical results above depends on the underlying problem and the
sample size. We consider a representative example for the model in (6),

f(x) = 0.8x + sin(6x), x ∈ R
1,

εi ∼ N (0, σ2), σ2 = 2, sample size n = 100. (11)

The learner S is chosen as a cubic smoothing spline which satisfies linearity, symmetry
and the eigenvalue-conditions used in Theorems 1 and 2.

The complexity of S, or the strength of the leaner, is chosen here in terms of the so-
called degrees of freedom (df) which equals the trace of S (Hastie and Tibshirani, 1990).
To study the interaction of the learner with the underlying problem, we fix the model
as in (11) and a cubic smoothing-spline learner with df=20. To decrease the learner’s
complexity (or increase the learner’s weakness), we use shrinkage (Friedman, 2001) to
replace S by

Sν = νS, 0 < ν ≤ 1.

For S a smoothing spline estimator, shrinkage with ν small corresponds to a linear operator
Sν whose eigenvalues {νλk}k are closer to zero than {λk}k for the original S. With small
ν, we thus get a weaker learner than the original S: shrinkage acts here similarly as
changing the degrees of freedom of the original S to a lower value. We will see its effect
in more complex examples in Sections 4.2 and 8. The boosting question becomes whether
even a very weak Sν , with ν very small, can be boosted with m large to achieve almost
optimal performance (defined through numerical search among all the estimators rising
from different shrinkage factors and different iterations of boosting). Figure 2 displays
MSE from specification (11) with x1, . . . , xn i.i.d. realizations from N (0, 1), as a function
of m and ν. It shows that the boosting question from above has a positive answer for this
case. That is, we observe the following from this example:

(1) Boosting with a large number of iterations has the potential to make a very weak
learner (with ν very small) almost optimal when compared with the best shrunken
learner νoptS. This is consistent with the asymptotic result in Theorem 3.

10

shrinkage=0.02

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

shrinkage=0.04

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

shrinkage=0.3

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

shrinkage=1.0

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

Figure 2: Traces of MSE as a function of boosting iterations m, for four different shrinkage
factors. Dotted line represents minimum, achieved with m = 0, ν = 0.76. The data is
from model (11) with sample size n = 100.

(2) Provided that the learner is sufficiently weak, boosting always improves, as we show
in Theorem 1.

(3) When the initial learner S is too strong, boosting decreases performance due to
overfitting. (In our case, the learner with 20 degrees of freedom is too strong or has
a too small amount of smoothing.)

(4) Boosting very weak learners is relatively safe, provided that the number of iterations
is large: the MSE with ν very low is flat for large number of iterations m.

Statements (2)–(4), numerically found for this example with a linear learner, have also
been shown to hold empirically for many data sets and with nonlinear learners in AdaBoost
and LogitBoost in classification. Statement (1), dealing with optimality, is asymptotically
explained by our Theorem 3. Also the recent work of Jiang (2000) hints at a consis-
tency result for AdaBoost: he shows that in the asymptotic sense and for classification,
AdaBoost visits optimal (Bayes-) procedures during the evolution of AdaBoost. How-
ever, this asymptotic consistency result doesn’t explain optimality or AdaBoost’s good
finite-sample performance.

All these behaviors happen well before the asymptopia m = ∞ or the convergence
of the boosting algorithm. For example, when having perfect knowledge of the MSE at
every boosting iteration as in our simulation example, a suitable stopping criterion would
be the relative difference of MSE between the current and previous iteration. When using
the tolerance, say 10−4 for this relative difference we would need m = 761, when using
Sν with ν = 1, and the resulting MSE at stopping is 1.088. For ν = 0.02, we would need
m = 1691 and the MSE at stopping is 1.146. This is still far from the stabilizing MSE

11

sample size n optimal smoothing spline optimal L2Boost gain

10 7.787 ·10−1 9.968 ·10−1 -28.0%
25 3.338 ·10−1 3.349 ·10−1 -0.3%
50 1.657 ·10−1 1.669 ·10−1 -0.7%
100 9.332 ·10−2 9.050 ·10−2 0.9%
1000 1.285 ·10−2 1.128 ·10−2 12.2%

Table 1: Mean squared error for simulated data from (11). Optimal cubic smoothing spline
(with best penalty parameter) and optimal L2Boost with smoothing spline (with best
number of boosting iterations). Positive gain, which measures the relative improvement
of mean squared error with L2Boost, indicates an advantage for boosting.

(m = ∞) which is σ2 = 2, see Theorem 1. The positive aspect is that we would stop
before reaching the extreme overfitting situation. This little illustration describes how
slow convergence in boosting could be.

We also demonstrate here empirically the adaptivity of L2Boost with smoothing splines
to higher smoothness, see Theorem 3. We use simulated data from model (11) with
x1, . . . , xn i.i.d. realizations from Uniform([−1/2, 1/2]), for sample sizes n = 10 up to
1000. Table 1 reports the performance of the best cubic smoothing spline (with optimal
penalty parameter) in comparison to L2Boosting a cubic smoothing spline with “fixed”
penalty λ0 = c, a constant (with optimal number of boosting iterations). We evaluate
the mean squared error E[(f(X) − f̂(X))2] (X a new test observation) by averaging
over 100 simulations from the model (11). We observe in Table 1 the following. For
n = 10, the smoothing spline learner in L2Boost is too strong and actually, the best
performance is with m = 0 (no boosting). In the mid-range with 25 ≤ n ≤ 100, the
differences between optimal smoothing spline and optimal L2Boost are negligible. For
the large sample size n = 1000, we see an advantage of L2Boost which is consistent with
the theory: the underlying regression function in (11) is infinitely smooth and L2Boost
exhibits an adaptation to higher order smoothness.

3.3 Estimating the optimal number of boosting iterations

The number m of boosting iterations is a tuning parameter in L2- and other boosting
methods. Theorem 1 and Figure 1 indicate a certain resistance against overfitting as m
gets large and thus the tuning of L2Boost should not be difficult. Nevertheless, a method
is needed to choose the value of m based on data, or to estimate the optimal iteration
number m.

A straightforward way which we found to work well is given by a 5-fold cross-validation
for estimating the mean squared error E[(Y − F̂m(X))2] in regression or the misclassifi-
cation error P[sign(F̂m(X)) 6= Y] in classification. An estimate m̂ for the number of
boosting iterations is then given as the minimizer of such a cross-validated error.

4 L2Boosting for regression in high dimensions

When the dimension d of the predictor space is large, the learner S is typically nonlinear.
In very high dimensions, it becomes almost a necessity to use a learner which is doing
some sort of variable selection. One of the most prominent examples are trees.

12

4.1 Component-wise smoothing spline as the learner

As an alternative to tree learners with two terminal nodes (stumps), we propose here
component-wise smoothing splines. A component-wise smoothing spline is defined as a
smoothing spline with one selected explanatory variable x ι̂ (ι̂ ∈ {1, . . . , d}), where

ι̂ = argminι

n
∑

i=1

(Yi − ĝι(xi,ι))
2,

where ĝι is the smoothing spline as defined in (10) using the predictor xι. Thus, the
component-wise smoothing spline learner is given by the function

ĝι̂ : x 7→ ĝι̂(xι̂), x ∈ R
d.

Boosting stumps and component-wise smoothing splines yields an additive model
whose terms are fitted in a stagewise fashion. The reason being that an additive com-
bination of a stump or a component-wise smoothing spline F̂0 +

∑M
m=1 f̂m, with f̂m(x)

depending functionally only on xι̂ for some component ι̂ ∈ {1, . . . , d}, can be re-expressed
as an additive function

∑d
j=1 m̂j(xj), x ∈ R

d. The estimated functions m̂j(·) when us-
ing boosting are fitted in stagewise fashion and different from the backfitting estimates
in additive models (cf. Hastie and Tibshirani, 1990). Boosting stumps or component-
wise smoothing splines is particularly attractive when aiming to fit an additive model in
very high dimensions with d larger or of the order of sample size n. Boosting has then
much greater flexibility to add complexity, in a stagewise fashion, to certain components
j ∈ {1, . . . , d} and may even drop some of the variables (components). We will give
examples in Section 4.2 that when the dimension d is large, boosting outperforms the
alternative classical additive modeling with variable selection, using backfitting.

4.2 Numerical results

We first consider the often analyzed data set of ozone concentration in the Los Angeles
basin which has been also considered in Breiman (1998) in connection with boosting.
The dimension of the predictor space is d = 8 and sample size is n = 330. We com-
pare here L2Boosting with classical additive models using backfitting and with MARS.
L2Boost is used with stumps and with component-wise cubic smoothing splines having
5 degrees of freedom (cf. Hastie and Tibshirani, 1990) and the number of iterations is
estimated by 5-fold cross-validation as described in section 3.3; additive model-backfitting
is used with the default smoothing splines in S-Plus; MARS is run by using the default
parameters as implemented in S-plus, library(mda). We estimate mean squared prediction
error E[(Y − F̂ (X))2] with F̂ (x) = Ê[Y |X = x] by randomly splitting the data into 297
training and 33 test observations and averaging 50 times over such random partitions.
Table 2 displays the results. We conclude that L2Boost with component-wise splines is
better than with trees and that it is among the best, together with classical backfitting
of additive models. Moreover, estimation of the number of boosting iterations works very
satisfactorily, exhibiting a performance which is very close to the optimum.

Next, we show a simulated example in very high dimensions relative to sample size,
where L2Boost as a stagewise method is better than backfitting for additive models with

13

method mean squared error

L2Boost with component-wise spline 17.78
L2Boost with stumps 21.33
additive model (backfitted) 17.41
MARS 18.09

with optimal no. of iterations

L2Boost with component-wise spline 17.50 (5)
L2Boost with stumps 20.96 (26)

Table 2: Cross-validated test set mean squared errors for ozone data. L2Boost with
estimated and optimal (minimizing cross-validated test set error) number of boosting
iterations, given in parentheses. The component-wise spline is a cubic smoothing spline
with df = 5.

variable selection. The simulation model is,

Y =

100
∑

j=1

(

1 + (−1)jAjXj + Bj sin(6Xj)
)

50
∑

j=1

(1 + Xj/50) + ε,

A1, . . . , A100 i.i.d. Unif([0.6, 1]) and

B1, . . . , B100 i.i.d. Unif([0.8, 1.2]), independent from the Aj ’s,

X ∼ Unif([0, 1]100) where all components are i.i.d. ∼ Unif([0, 1]),

ε ∼ N (0, 2). (12)

Samples of size n = 200 are generated from model (12): for each model realization (realized
coefficients A1, . . . A100, B1, . . . , B50), we generate 200 i.i.d. pairs (Yi, Xi) (i = 1, . . . , n =
200).

We use the same methods as above. However, we use classical additive modeling with
a forward variable selection (inclusion) strategy because d = 100 is very large compared
to n = 200. We evaluate E[(F̂ (X) − E[Y |X])2] (X a new test observation) at the true
conditional expectation which can be done in simulations. Already a stump appeared to
be too strong for L2Boost and we therefore used shrunken learners νS with ν = 0.5 chosen
ad-hoc; we also allow the non-boosting procedures to be shrunken with ν = 0.5. Table
4 shows the average performance over 10 simulations from model (12). L2Boost is the
winner over additive models and MARS, and the component-wise spline is a better learner
than stumps. Note that only the methods in the upper part of Table 3 are fully data-
driven (the additive fits use the number of variables minimizing the true mean squared
error). We believe that it is mainly in such high-dimensional situations where boosting
has a clear advantage over other flexible nonparametric methods; and not so much in
examples where the dimension d is “mid-range” or even small relative to sample size.

For simulated data, assessing significance for differences in performance is easily pos-
sible. Because all the different methods are used on the same data realizations, pairwise
comparisons should be made. Table 4 displays the p-values of paired Wilcoxon tests.
We conclude for this simulation model (12) that L2Boost with componentwise smoothing
spline is best and significantly outperforms the more classical methods such as MARS or
additive models.

14

method mean squared error

L2Boost with shrunken component-wise spline 11.87
L2Boost with shrunken stumps 12.76
MARS 25.19
shrunken MARS 15.05

with optimal no. of iterations or variables

L2Boost with shrunken component-wise spline 10.69 (228)
L2Boost with shrunken stumps 12.54 (209)
additive model (backfitted and forward selection) 16.61 (1)
shrunken additive model (backfitted and forward selection) 14.44 (19)

Table 3: Mean squared errors for simulated data from (12) with n = 200. L2Boost with
estimated and optimal (minimizing MSE) number of boosting iterations, given in paren-
theses; additive model with optimal number of selected variables, given in parentheses.
The component-wise spline is a cubic smoothing spline with df = 5; shrinkage factor is
always ν = 0.5.

L2Boost shr. stumps shr. MARS shr. additive model

L2Boost shr. comp. spline 0.193 0.010 0.004
L2Boost shr. stumps – 0.010 0.014
shr. MARS – – 0.695

Table 4: p-values from paired two-sided Wilcoxon-tests for equal mean squared errors.
Simulated data from (12) with n = 200 and 10 independent model realizations. p-values
of two-sided tests are always in favor of the method in the row, i.e. sign of test-statistic
always points towards favoring the method in the row. L2Boost with estimated number
of boosting iterations, specification of the methods as in Table 3 (“shr.” abbreviates
shrunken).

5 L2Boosting for classification

The L2Boost algorithm can also be used for classification, and it enjoys a computational
simplicity in comparison with AdaBoost and LogitBoost.

5.1 Two-class problem

Consider a training sample

(Y1, X1), . . . , (Yn, Xn) i.i.d., Yi ∈ {−1, 1}, Xi ∈ R
d. (13)

L2Boosting then yields an estimate F̂m for the unknown function E[Y |X = x] = 2p(x)−1,
where p(x) = P[Y = 1|X = x]; the classification rule is given by (5). Note that also in
two-class problems, the generic functional gradient descent repeatedly fits some learner
h(x, θ) taking values in R.

In addition to the L2Boost algorithm, we propose a modification called “L2Boost with
constraints” (L2WCBoost). It proceeds as L2Boost, except that F̂m(x) is constrained to
be in [−1, 1]: this is natural since the target F (x) = E[Y |X = x] ∈ [−1, 1] is also in this
range.

15

L2WCBoost algorithm

Step 1. F̂0(x) = h(x; θ̂Y,X) by least squares fitting. Set m = 0.

Step 2. Compute residuals Ui = Yi−F̂m(Xi) (i = 1, . . . , n). Then, fit (U1, X1) . . . , (Un, Xn)
by least squares

f̂m+1(x) = h(x, θ̂U,X).

Update

F̃m+1(·) = F̂m(·) + f̂m+1(·),

F̂m+1(x) = sign(F̃m+1(x))min
(

1, |F̃m+1(x)|
)

.

Note that if |F̃m+1(x)| ≤ 1, the updating step is as in the L2Boost algorithm.
Step 3. Increase m by one and go back to Step 2.

5.1.1 Theory

For theoretical purposes, consider the model in (13) but with fixed, real-valued predictors:

Yi ∈ {−1, 1} independent, P[Yi = 1|xi] = p(xi), xi ∈ R (i = 1, . . . , n). (14)

Estimating E[Y |xi] = 2p(xi) − 1 in classification can be seen as estimating the regression
function in a heteroscedastic model,

Yi = 2p(xi) − 1 + εi (i = 1, . . . , n),

where εi are independent, mean zero variables, but with variance 4p(xi)(1−p(xi)). Because
the variances are bounded by 1, the arguments in the regression case can be modified to
give the optimal rates of convergence results for estimating p.

Theorem 4. (optimality of L2Boost for smoothing splines in classification). Consider

the model in (14). Suppose p ∈ W
(ν)
2 , see (9), and S is a smoothing spline linear learner

gr(λ0) of degree r, corresponding to a fixed smoothing parameter λ0, see (10). If ν ≥ r,
then there is an m = m(n) = O(n2r/(2ν+1)) → ∞ such that F̂m(n) achieves the optimal

minimax rate n−2ν/(2ν+1) of the smoother function class W
(ν)
2 for estimating 2p(·) − 1 in

terms of MSE as defined in (8).

A proof is given in the Appendix. It is well-known that 2 times the L1-norm bounds
from above the difference between the generalization error of a plug-in classifier (expected
0-1 loss error for classifying a new observation) and the Bayes Risk (cf. Theorem 2.3 of
Devroye et al., 1996). Furthermore, the L1-norm is upper bounded by the L2-norm. It
follows from the above Theorem 4 that if the underlying p belongs to one of the smooth

function class W
(ν)
2 , L2Boosting converges to the average Bayes risk (ABR)

ABR = n−1
n

∑

i=1

P[sign(2p(xi) − 1) 6= Yi].

Moreover, the L2-bound implies the following.

16

Corollary 2. Under the assumptions and specifications in Theorem 4,

n−1
n

∑

i=1

P[sign(F̂m(n)(xi)) 6= Yi] − ABR = O(n−ν/(2ν+1)).

Because the functions in W
(ν)
2 are bounded, using Hoeffding’s inequality we can show

that for both the terms in the above Corollary 2, replacing the average by an expectation
with respect to a density for x would cause an error of order o(n−ν/(2ν+1)) since ν/(2ν +
1) < 1/2. Hence the above result also holds if we replace the averaging by an expectation
with respect to a randomly chosen x with a design density and replace the ABR by the
corresponding Bayes risk.

For the generalization error with respect to a random x, Yang (1999) shows that the
n−ν/(2ν+1) rate above is also minimax optimal for classification over the Lipschitz family

L
(ν)
2

L
(ν)
2 = {p : ‖p(x + h) − p(x)‖2 < Chν , ‖p‖2 < C}, (15)

where ‖p‖2 = (
∫

p2(x)dx)1/2. Yang (1999) uses a hypercube subclass in L
(ν)
2 to prove the

lower bound rate n−ν/(2ν+1). This hypercube subclass also belongs to our W
(ν)
2 . Hence

the rate n−ν/(2ν+1) also serves as a lower bound for our W
(ν)
2 . Thus we have proved that

the minimax optimal rate n−ν/(2ν+1) of convergence for the classification problem over

the global smoothness class W
(ν)
2 .

Marron (1983) gives a faster classification minimax rate of convergence n−2ν/(2ν+1)

for a more restrictive global smoothness class and the same rate holds for us if we adopt
that class. On the other hand, Mammen and Tsybakov (1999) consider different function
classes which are locally constrained near the decision boundary and show that a faster
than the parametric rate n−1 can even be achieved. The local constrained classes are more
natural in the classification setting with the 0-1 loss since, as seen from our smoothed 0-1
loss expansion in Section 6.1, the actions happen near the decision boundary. These new
rates are achieved by avoiding the plug-in classification rules via estimating p. Instead,
empirical minimization of the 0-1 loss function over regularized classes of decision regions
is used. However, computationally such a minimization could be very difficult. It remains
open whether boosting can achieve these new optimal convergence rates in Mammen and
Tsybakov (1999).

5.2 Multi-class problem

The multi-class problem has response variables Yi ∈ {1, 2, . . . , J}, taking values in a finite
set of labels. An estimated classifier, under equal misclassification costs, is then given by

Ĉ(x) = argmaxj∈{1,...,J}P̂[Y = j|X = x].

The conditional probability estimates p̂j(x) = P̂[Y = j|X = x] (j = 1, . . . , J) can be
constructed from J different two-class problems, where each two-class problem encodes
the events {Y = j} and {Y 6= j}: this is also known as the “one against all” approach,
cf. Allwein et al. (2001). Thus, the L2Boost algorithm for multi-class problems works as
follows:

17

Step 1. Compute F̂
(j)
m (·) as an estimate of pj(·) with L2- or L2WCBoost (j = 1, . . . , J)

on the basis of binary response variables

Y
(j)
i =

{

1 if Yi = j
−1 if Yi 6= j

, i = 1, . . . , n.

Step 2. Construct the classifier as

Ĉm(x) = argmaxj∈{1,...,J}F̂
(j)
m (x).

The optimality results from Theorem 4 carries over to the multi-class case. Of course,
other codings of a multi-class problem into multiple two-class problems can be done, cf.
Allwein et al. (2001). The “one against all” scheme did work well in the cases we were
looking at, see also section 7.2.

6 Understanding the 0-1 loss in two class problems

6.1 Generalization error via tapered moments of the margin

We consider here again the two-class problem as in (13). The performance is often measure
by the generalization error

P[sign(F̂m(X)) 6= Y] = P[Y F̂m(X) < 0] = E[1[Y F̂m(X)<0]]. (16)

where P and E are over all the random variables in the training set (13) and the testing
observation (Y,X) ∈ {−1, 1} × R

d, which is independent of the training set. Insights
about the expected zero-one loss function in (16), the generalization error, can be gained
by approximating it, for theoretical purposes, with a smoothed version

E[Cγ(Y F̂m(X))],

Cγ(z) = (1 −
exp(z/γ)

2
)1[z<0] +

exp(−z/γ)

2
1[z≥0], γ > 0.

The parameter γ controls the quality of approximation.

Proposition 4. Assume that the distribution of Z = Y F̂m(X) has a density g(z) which
is bounded for z in a neighborhood around zero. Then,

|P[Y F̂m(X) < 0] − E[Cγ(Y F̂m(X))]| = O(γ log(γ−1)) (γ → 0).

A proof is given in the Appendix. Proposition 4 shows that the generalization error
can be approximated by an expected cost function which is infinitely often differentiable.

Proposition 4 motivates to study generalization error through E[Cγ(Z)] with Z =
Y F̂m(X). Applying a Taylor series expansion of Cγ(·) around Z∗ = Y F (X) we obtain

E[Cγ(Z)] = E[Cγ(Z∗)] +

∞
∑

k=1

1

k!
E[C(k)

γ (Z∗)(Z − Z∗)k]. (17)

Thereby, the variables Z and Z∗ denote the so-called estimated and true margin: a positive
margin denotes a correct classification (and vice-versa) and the actual value of the margin

18

describes closeness to the classification boundary {x : F (x) = 0} . The derivatives of
Cγ(·) are

C(k)
γ (z) =

1

γk
exp(

−|z|

γ
)(−1[z<0] + (−1)k1[z≥0]). (18)

Using conditioning on the test observations (Y,X), the moments can be expressed as

E[C(k)
γ (Z∗)(Z − Z∗)k] =

∑

y∈{−1,1}

∫

C(k)
γ (yF (x))ykbk(x)P[Y = y|X = x]dPX(x),

bk(x) = E[(F̂m(x) − F (x))k], where expectation is over the training set in (13). (19)

Thereby, PX(·) denotes the distribution of the predictors X.
From (17) and (19) we see that the smooth approximation to the generalization error

of any procedure is approximately, in addition to the approximate Bayes risk E[CγZ∗], the

sum of moments bk(x), tapered by C
(k)
γ (yF (x))/k! which decays very quickly as yF (x)

moves away from zero. This exploits from a different view the known fact that only
the behavior of bk(x) in the neighborhood of the classification boundary {x; F (x) = 0}
matters to the generalization error.

The first two terms in the approximation (17) are the tapered bias- and the tapered
L2-term, see (19) with k = 1 and 2. The higher order terms can be expanded as terms of
interactions between the centered moments and the bias term (all tapered),

bk(x) = E[(F̂m(x) − F (x))k] =
k

∑

j=0

(

k
j

)

b1(x)kE[(F̂m(x) − E[F̂m(x)])k−j]. (20)

This seemingly trivial approximation has three important consequences. The first is that
bias (after tapering) as the first term in (17) and multiplicative terms in higher moments,
see (20), plays a bigger role in (smoothed) 0-1 loss classification than in L2-regression.
Second, in the case of boosting, since all the (tapered) centered moment terms in (19) are
bounded by expressions with exponentially diminishing increments as boosting iterations
m get large (see Section 3, particularly Theorem 2) we gain resistance against overfitting.
In view of the additional tapering, this resistance is even stronger than in regression,
see also the rejoinder of Friedman et al. (2000) for a relevant illustration. The third
consequence of the approximation in (17), (19) and (20) is to suggest why the previous
attempts were not successful at decomposing the 0-1 prediction (generalization) error into
additive bias and variance terms (cf. Geman et al. 1992; Breiman, 1998, and references
therein). This, because except for the first two terms, all other important terms include
the bias-term also in a multiplicative fashion (see (20)) for each term in the summation
(17), instead of a pure additive way.

We conclude heuristically that the exponentially diminishing centered moment in-
crease with the number of boosting iterations (as stated in Theorem 2), together with
the tapering in the smoothed 0-1 loss yield the overall, often strong, overfitting-resistance
performance of boosting in classification.

6.2 Acceleration of F and classification noise

As seen in Section 6.1, resistance against overfitting is closely related to the behavior
of F (·) at the classification boundary. If the true F (·) moves away quickly from the

19

classification boundary {x;F (x) = 0}, the relevant tapering weights C
(k)
γ (yF (x)) decay

very fast. This can be measured with grad(F (x))|x=0, the gradient of F at zero. F (·) is
said to have a large acceleration if its gradient is large (element-wise in absolute values, or
in Euclidean norm). Thus, a large acceleration of F (·) should result in strong resistance
against overfitting in boosting.

Noise negatively affects the acceleration of F (·). Noise in model (13), often called
“classification noise”, can be thought of in a constructive way. Consider a random variable
W ∈ {−1, 1}, independent from (Y,X) with P[W = −1] = π, 0 ≤ π ≤ 1/2. The noisy
response variable is

Ỹ = WY, (21)

changing the sign of Y with probability π. Its conditional probability is easily seen to be,

P[Ỹ = 1|X = x] = P[Y = 1|X = x](1 − 2π) + π, 0 ≤ π ≤ 1/2. (22)

Denote by F̃ (·) the noisy version of F (·) with P[Ỹ = 1|X = x] replacing P[Y = 1|X = x],
either for F (·) being half of the log-odds ratio or the conditional expectation, see (3). A
straightforward calculation then shows,

grad(F̃ (x))|x=0 ↘ 0 as π ↗ 1/2. (23)

The noisier the problem, the smaller the acceleration of F̃ (·) and thus less resistance
against overfitting since the tapering weights in (18) are becoming larger in noisy prob-
lems. This adds insights to the known empirical fact that boosting doesn’t work well
in noisy problems, see Dietterich (2000). Typically, overfitting then kicks in early and
many learners are too strong in noisy problems. Using LogitBoost (Friedman et al.,
2000), this effect is demonstrated in Figure 3 for the breast cancer data available at
(http://www.ics.uci.edu/˜mlearn/MLRepository) which has been analyzed by many oth-
ers. We see there that already a stump becomes too strong for LogitBoost in the 25% or
40% noise added breast cancer data.

Of course, adding noise makes the classification problem harder. The optimal Bayes
classifier C̃Bayes(·) in the noisy problem has generalization error

P[Ỹ (X) 6= C̃Bayes(X)] = π + (1 − 2π)P[Y (X) 6= CBayes(X)], 0 ≤ π ≤ 1/2,

relating it to the Bayes classifier CBayes of the original non-noisy problem. This is easily
derived using (22). With high noise, the expression is largely dominated by the constant
term π, indicating that there isn’t much to gain by using a clever classifier (say close to
optimal Bayes) instead of a naive one. Even more so, the relative improvement, which is
often used to demonstrate the better performance of a powerful classifier (over a bench-
mark), becomes less dramatic due to the high noise level causing a large misclassification
benchmark rate.

7 Comparing L2Boost with LogitBoost on real and simu-

lated data sets

We compare L2Boost, our L2WCBoost and LogitBoost using tree learners and our component-
wise smoothing spline learner from Section 4.1.

20

no noise

m

te
st

 s
et

 e
rro

r

0 50 100 150 200 250 300

0.
04

0.
06

0.
08

10%noise

m

te
st

 s
et

 e
rro

r

0 50 100 150 200 250 3000.
15

5
0.

16
5

0.
17

5

25%noise

m

te
st

 s
et

 e
rro

r

0 50 100 150 200 250 300

0.
26

0.
27

0.
28

0.
29

40%noise

m

te
st

 s
et

 e
rro

r

0 50 100 150 200 250 300

0.
39

0
0.

40
0

0.
41

0
Figure 3: Test set misclassification errors for LogitBoost with stumps. Breast cancer data
with different noise levels π (in %) as described in (21).

7.1 Two-class problems

We consider first a variety of 2-class problems from the UCI machine learning reposi-
tory (http://www.ics.uci.edu/˜mlearn/MLRepository): Breast cancer, Ionosphere, Monk
1 (full data set with n = 432) and the Heart, Sonar and Australian credit data sets
from the Statlog project. Monk 1 has Bayes error equal to zero. The estimated test
set misclassification errors, using an average of 50 random divisions into training with
90% and test set with 10% of the data, are given in Table 5. The comparison is made
when using the optimal (with respect to cross-validated test set error) number of boosting
iterations for every boosting algorithm; these numbers are given in parentheses. As
has been well documented earlier (cf. Breiman (1998), Dietterich (2000), Friedman et
al. (2000)), boosting with trees is usually much better than CART, displayed in Table
6. We use here two versions of CART: one where an initial large tree is pruned with the
amount of pruning estimated by cross-validation, and the other using the default settings
in S-Plus for an unpruned tree. See Table 6. The component-wise learner is used only
for the breast cancer data with ordinal predictors and for the sonar data with contin-
uous predictors. For the latter, spline smoothing makes most sense and we also found
empirically that it is there where it improves upon the tree-based stumps. Estimating
the number of boosting iterations can be done by 5-fold cross-validation as described in
section 3.3. The effect of using the optimal number of boosting iterations instead of an
estimated number is typically small: for example with the breast cancer data, estimating
the number of boosting iterations by 5-fold cross-validation yields a final performance for
L2WCBoost with stumps as then 0.043 instead of 0.040 when using the optimal number
of stopping. L2WCBoost performs overall a bit better than L2Boost, although in half of
the data sets L2Boost was better. LogitBoost was better than L2Boost in 4 out of 6 and

21

dataset n d learner L2Boost L2WCBoost LogitBoost

Breast cancer 699 9 stumps 0.037 (176) 0.040 (275) 0.039 (27)
comp. spline 0.036 (126) 0.043 (73) 0.038 (5)

Sonar 210 60 stumps 0.228 (62) 0.190 (335) 0.158 (228)
comp. spline 0.178 (51) 0.168 (47) 0.148 (122)

Ionosphere 351 34 stumps 0.088 (25) 0.079 (123) 0.070 (157)
Heart (without costs) 270 13 stumps 0.167 (4) 0.175 (3) 0.159 (3)

Australian credit 690 14 stumps 0.123 (22) 0.123 (19) 0.131 (16)
Monk 1 432 7 larger tree 0.002 (42) 0.004 (12) 0.000 (6)

Table 5: Test set misclassification errors for L2Boost, L2WCBoost (with constraints)
and LogitBoost. Optimal (minimizing cross-validated test set error) number of boosts
is given in parentheses; if the optimum is not unique, the minimum is given. “Larger
tree” denotes a tree learner such that the ancestor nodes of the terminal leaves contain at
most 10 observations: resulting average tree size (integer-rounded) for L2WCBoost is 12
terminal nodes.

Breast cancer Sonar Ionosphere Heart Australian credit Monk 1

unpruned CART 0.060 0.277 0.136 0.233 0.151 0.164
pruned CART 0.067 0.308 0.104 0.271 0.146 0.138

Table 6: Test set misclassification errors for CART. Unpruned version with defaults from
S-Plus; pruning with cost-complexity parameter, estimated via minimal cross-validated
deviance.

better than L2WCBoost in 5 out of 6 data sets, but most often only by a small amount.
The biggest difference in performance is for the Sonar data which has the most extreme
ratio of dimension d to sample size n. But also for this data set, the difference is far from
being significant since sample size is much too small.

Therefore, we consider next simulated data to compare the L2WCBoost (the slightly
better of the L2procedures) with the LogitBoost algorithm. It allows a more accurate
comparison by choosing large test sets. We generate data with two classes from the model
in Friedman et al. (2000) with a non-additive decision boundary,

X ∼ N10(0, I), Y |X = x ∼ 2 Bernoulli(p(x)) − 1,

log(p(x)/(1 − p(x))) = 10

10
∑

j=1

xj(1 +

6
∑

k=1

(−1)kxk). (24)

The (training) sample size is n = 2000. It is interesting to consider the performance on a
single training and test data which resembles the situation in practice. For that purpose
we choose a very large test set of size 100’000 so that variability of the test set error given
the training data is very small. Additionally, we consider an average performance over 10
independent realizations from the model: here, we choose test set size as 10’000 which is
still large compared to the training sample size n = 2000. The latter is the same set-up
as in Friedman et al. (2000).

Figure 4 displays the results on a single data set. L2WCBoost and LogitBoost perform
about equally well. There is a slight advantage for L2WCBoost with the larger regression
tree learner having about 9 terminal nodes. It has been pointed out by Friedman et

22

stumps; single data set

m

te
st

 s
et

 e
rr

or

0 200 400 600 800 1000

0.
34

0.
38

0.
42

L2WCBoost
LogitBoost

larger tree; single data set

m

te
st

 s
et

 e
rr

or

0 500 1000 1500 2000 2500 3000

0.
18

0.
20

0.
22

0.
24 L2WCBoost

LogitBoost

Figure 4: Test set misclassification errors for a single realization from model (24). Top:
stumps as learner. Bottom: larger tree as learner with at most 175 observations per
terminal node (integer-rounded average tree size for L2WCBoost is 9 terminal nodes).

larger tree; 10 simulations

m

te
st

 s
et

 e
rro

r

0 500 1000 1500 2000

0.
18

0.
20

0.
22

0.
24

L2WCBoost
LogitBoost

Figure 5: Test set misclassification errors averaged over 10 realizations from model (24).
Larger tree as learner with at most 175 observations per terminal node (integer-rounded
average tree size for L2WCBoost is 9 terminal nodes).

23

al. (2000) that stumps are not good learners because the true decision boundary is non-
additive. With stumps as learners, the optimally (minimizing test set error) stopped
LogitBoost has a tiny advantage over the optimally stopped L2WCBoost (by about 0.13
estimated standard errors for the test set error estimate, given the training data). With
larger trees, L2Boost has a more substantial advantage over LogitBoost (by about 1.54
standard errors, given the data).

Figure 5 shows the averaged performance over 10 independent realizations with larger
trees as learner: it indicates a more substantial advantage than on the single data repre-
sented by Figure 4. With 10 independent realizations, we test whether one of the optimally
(minimizing test set error) stopped Boosting algorithms yields a significantly better test
set misclassification error. In 9 out of the 10 simulations, optimally stopped L2WCBoost
was better than LogitBoost. The p-values for testing the hypothesis of equal performance
against the two-sided alternative are given in Table 7. Thus, for the model (24) from

t-test Wilcoxon-test sign-test

p-value 0.0015 0.0039 0.0215

Table 7: Comparison of L2WCBoost and LogitBoost: two-sided testing for equal test set
performance. Low p-values are always in favor of L2WCBoost.

Friedman et al. (2000), we find a significant advantage of L2WCBoost over LogitBoost.
It is not so surprising that L2WCBoost and LogitBoost perform similarly. In nonpara-

metric problems, loss functions are used locally in a neighborhood of a fitting point x ∈ R
d;

an example is the local likelihood framework, cf. Loader (1999). But locally, the L2- and
negative log-likelihood (with Bernoulli distribution) losses have the same minimizers.

7.2 Multi-class problems

We also run the L2WCBoost algorithm using the “one-against all” approach described in
section 7.2 on two often analyzed multi-class problems. The results are given in Table 8.
The test set error curve remained essentially flat after the optimal number of boosting

dataset ntrain, ntest d no. classes learner error

Satimage 4435, 2000 36 6 stumps 0.110 (592)
≈ 8 terminal node tree 0.096 (148)

Letter 16000, 4000 16 26 ≈ 30 terminal node tree 0.029 (460)

Table 8: Test set misclassification errors for L2WCBoost. Optimal number of boosts
(minimizing test set error), is given in parentheses; if the optimum is not unique, the
minimum is given. The approximate tree size is the integer-rounded average of tree sizes
used during all 800 (satimage) or 1000 (letter) boosting iterations.

iterations: for the satimage data, the range of the test set error was [0.096, 0.105] for
iteration numbers 148 - 800 (pre-specified maximum); while for the letter data, the range
was [0.029, 0.031] for iteration numbers 460-1000 (pre-specified maximum). Therefore, a
similar performance is expected with estimated number of iterations.

In comparison to our results with L2WCBoost, Friedman et al. (2000) obtained the
following with their LogitBoost algorithm using the fixed number of 200 boosting iter-
ations: 0.102 with stumps and 0.088 with 8 terminal node tree for the satimage data;
and 0.033 with 8 terminal node tree for the letter data. We have also tuned CART and

24

obtained the following test set error rates: 0.146 for satimage and 0.133 for the letter data
set.

Thus, we find here a similar situation as for the 2-class problems: L2WCBoost is about
as good as LogitBoost and both of them are better than CART (by a significant amount
for the letter data set).

8 Discussion and concluding remarks

As seen in Section 3, the computationally simple L2Boosting is successful if the learner is
sufficiently weak (sufficiently low variance), see also Figure 2. If the learner is too strong
(too complex), then even at the first boosting iteration the MSE is not improved over
the original learner. Also in the classification case it is likely that the generalization error
will then increase with the number of boosting steps, stabilizing eventually due to the
numerical convergence of the boosting algorithm to the fully saturated model (at least
for linear learners with eigenvalues bounded away from zero). Of course, the weakness
of a learner depends also on the underlying signal to noise ratio, see also assertion (2)
in Theorem 1. But the degree of weakness of a learner can always be increased by an
additional shrinkage using Sν = νS with shrinkage factor 0 < ν < 1. For L2Boost with
one-dimensional predictors, we have presented asymptotic results in Section 3.2, stating
that boosting weak smoothing splines is as good or even better than using an optimal
smoothing spline since boosting adapts to unknown smoothness. In high dimensions, we
see most practical advantages of boosting: we have exemplified this in Section 4.2.

The fact that the effectiveness of L2Boost depends on the strength of the learner and
the underlying problem is also (empirically) true for other variants of boosting. We show
in Figure 6 some results for LogitBoost with trees and with projection pursuit learners
having one ridge function (one term) for the breast cancer data. All tree learners are
sufficiently weak for the problem and the shrunken large tree seems best. Interestingly,
the projection pursuit learner is already strong and boosting does not pay off. This
matches the intuition that projection pursuit is very flexible, complex and hence strong.
Boosting projection pursuit a second time (m = 2) reduces performance: this estimate
with m = 2 can then be improved by further boosting. Eventually the test set error curve
exhibits overfitting and stabilizes at a relatively high value. We observed a similar pattern
with projection pursuit learners in another simulated example. Such a multi-minimum
phenomenon is typically not found with tree learners, but it is not inconsistent with our
theoretical arguments.

Most of the empirical studies of boosting in the literature use a tree-structured learner.
Their complexity is often low because they are themselves fitted by a stagewise selection
of variables and split points, as in CART and other tree algorithms (while the complexity
would be much higher, or it would be a much stronger learner, if the tree were fitted
by a global search – which is of course infeasible). When the predictor space is high-
dimensional, the substantial amount of variable selection done by a tree procedure is
particularly helpful in leading to a low complexity (or weak) learner. And this feature
may be very desirable.

In this paper, we mainly investigated the computationally simple L2Boost by taking
advantage of its analytical tractability, and we also demonstrated its practical effective-
ness. To summarize, we showed that

1. L2Boost is appropriate both for regression and classification. It leads to competitive

25

tree learners

m

te
st

 s
et

 e
rro

r

0 50 100 150 200 250 300

0.
03

5
0.

04
5

0.
05

5

PPR learners

m

te
st

 s
et

 e
rro

r

0 100 200 300 400 500

0.
03

5
0.

04
5

0.
05

5

Figure 6: Test set misclassification errors of LogitBoost for breast cancer data. Top:
decision tree learners, namely stumps (solid line), large unpruned tree (dotted line) and
shrunken large unpruned tree (dashed line) with shrinkage factor ν = 0.01. Bottom:
projection pursuit (PPR) learners , namely one term PPR (solid line) and shrunken one
term PPR (dotted line) with shrinkage factor ν = 0.01.

performance, also in classification relative to LogitBoost.

2. L2Boost is a stagewise fitting procedure with the iteration m acting as the smoothing
or regularization parameter (this is also true with other boosting algorithms). In
the linear learner case, m controls a new exponential bias-variance trade-off.

3. L2Boost with smoothing splines results in optimal minimax rates of convergence,
both in regression and classification. Moreover, the algorithm adapts to unknown
smoothness.

4. Boosting learners which involve only one (selected) predictor variable yields an ad-
ditive model fit. We propose component-wise cubic smoothing splines, which are of
such type, and we believe that they are often better learners than tree-structured
stumps, especially for continuous predictors.

5. Weighting observations is not used for L2Boost: we doubt that the success of general
boosting algorithms is due to “giving large weights to heavily misclassified instances”
as Freund and Schapire (1996) conjectured for AdaBoost. Weighting in AdaBoost
and LogitBoost comes as a consequence of the choice of the loss function, and is
likely not the reason for their successes. It is interesting to note here Breiman’s
(2000) conjecture that even in the case of AdaBoost, weighting is not the reason for
success.

26

6. A simple expansion of the smoothed 0-1 loss reveals new insights into the classifica-
tion problem, particularly an additional resistance of boosting against overfitting.

Acknowledgments

We would like to thank Trevor Hastie and Leo Breiman for very helpful discussions. We
also thank two referees for constructive comments. Partial support to B. Yu is gratefully
acknowledged from the National Science Foundation (DMS-9803063 and FD01-12731) and
the Army Research Office (DAAG55-98-1-0341 and DAAD19-01-1-0643).

Appendix

Proof of Proposition 1.
For L2Boost with cost function C(y, u) = (y − u)2/2, the negative gradient in stage j is
the classical residual vector uj = Y −Fj−1 and Fj = Fj−1 + fj (there is no need for a line
search) with fj = Suj. Thus,

uj = Y − Fj−1 = uj−1 − Suj−1 = (I − S)uj−1, j = 1, 2, . . . ,m,

implying uj = (I −S)jY for j = 1, 2, . . . ,m. Since F0 = SY we obtain F̂m =
∑m

j=0 S(I −

S)jY . Using a telescope-sum argument, this equals (I − (I − S)m+1)Y . 2

Proof of Proposition 3.
The bias term is

bias2(m,S; f) = (E[BmY] − f)T (E[BmY] − f) = ((Bm − I)f)T ((Bm − I)f).

According to (7), using orthonormality of U ,

Bm − I = U(Dm − I)UT = Udiag(−(1 − λk)
m+1)UT .

Thus, again by orthonormality of U , the formula for the bias follows.
For the variance, consider

Cov(BmY) = BmCov(Y)BT
m = σ2BmBT

m = σ2Udiag((1 − (1 − λk)
m+1)2)UT ,

using (7) and orthonormality of U . Then,

variance(m,S;σ2) = tr[Cov(BmY)] = σ2
n

∑

k=1

(1 − (1 − λk)
m+1)2,

again using orthonormality of U . 2

Proof of Theorem 1.
Assertion (1) is an immediate consequence of Proposition 3.
Without loss of generality, assume λk < 1 for all k. If not, restrict the summation to those
k’s which satisfy λk < 1.

(i) Denote by µ = UT f ∈ R
n. For x ≥ 0, let

g(x) = n−1
n

∑

k=1

µ2
k(1 − λk)

2x+2 + σ2n−1
n

∑

k=1

(1 − (1 − λk)
x+1)2.

27

Then

g(m) = MSE(m,S; f, σ2) = bias2(m,S; f) + variance(m,S;σ2).

It is easy to derive

g′(x) = 2n−1
n

∑

k=1

[(µ2
k + σ2)(1 − λk)

x+1 − σ2](1 − λk)
x+1 log(1 − λk).

It follows that

g′(0) = 2n−1
n

∑

k=1

[(µ2
k + σ2)(1 − λk) − σ2](1 − λk) log(1 − λk),

g′(1) = 2n−1
n

∑

k=1

[(µ2
k + σ2)(1 − λk)

2 − σ2)](1 − λk)
2 log(1 − λk)

which are both negative under the inequality condition in (i); also g ′(x) < 0 for x ∈ (0, 1)
under this condition. Hence g(1) < g(0) which means boosting improves.

(ii) Rewrite

g(x) = n−1
n

∑

k=1

[(µ2
k + σ2)(1 − λk)

x+1 − 2σ2](1 − λk)
x+1 + σ2.

Since for all k (with λk < 1), (µ2
k + σ2)(1 − λk)

x+1 − 2σ2 → −2σ2 as x → ∞, there exists
an m such that (µ2

k + σ2)(1− λk)
m+1 − 2σ2 ≤ −σ2 for all k (with λk < 1). It follows that

g(m) ≤ −n−1
n

∑

k=1

(1 − λk)
m+1σ2 + σ2 < σ2.

It is obvious that g(m) → σ2 as m → ∞. 2

Proof of Theorem 2.
Write the summands with the higher order moment as

E[(F̂m(xi) − f(xi))
p] =

p
∑

j=0

(

p
j

)

bm(xi)
j
E[(F̂m(xi) − E[F̂m(xi)])

p−j], (25)

where bm(xi) = E[F̂m(xi)− f(xi)] is the bias term. Thus, we have transformed the higher
order moment as a sum of higher order centered moments with the bias as a multiplier
which goes to zero as m → ∞. The centered moments can be written as

(F̂m(xi) − E[F̂m(xi)])
q = (BmY − E[BmY])qi

= (Bmε)qi = ((I − (I − S)m+1)ε)qi = (ε − (I − S)m+1ε)qi ,

where we used assertion 1 from Proposition 1. Since (I −S)m+1 is a map (matrix) taking
values exponentially close to zero as m → ∞, we obtain

E[(F̂m(xi) − E[F̂m(xi)])
q] = E[εq

i] + O(exp(−Cqm)) (m → ∞)

28

for some constant Cq > 0. From this last bound and using (25) together with the fact
that the bias bm(xi) = O(exp(−Cbm)) (m → ∞) for some constant Cb > 0 (see Theorem
1), we complete the proof. 2

Proof of Theorem 3.
Let S be the smoothing spline operator corresponding to smoothness r and with smoothing
parameter c = λ0 (to avoid notational confusion with eigenvalues). It is well-known (cf.
Utreras, 1983; Wahba, 1990, p.61) that the eigenvalues of S take the form in decreasing
order

λ1 = ... = λr = 1, λk =
nqk,n

nλ0 + nqk,n
for k = r + 1, ..., n.

Moreover, for n large, qk,n ≈ Ak−2r := Aqk where A is universal and depends on the

asymptotic density of the design points xi. For the true function f ∈ W
(ν)
2 ,

1

n

n
∑

k=r+1

µ2
kk

2ν ≤ M < ∞.

Let c0 = c/A, then

λk ≈
qk

c0 + qk
for k = r + 1, ..., n.

Then the bias term can be bounded as follows.

bias2(m,S; f) =
1

n

n
∑

k=r+1

(1 − λk)
2m+2µ2

k

≈
1

n

n
∑

k=r+1

(1 − qk/(c0 + qk))
2m+2k−2νµ2

kk
2ν

≤ max
k=r+1,...,n

(1 − qk/(c0 + qk))
2m+2k−2ν ×

1

n

n
∑

k=r+1

µ2
kk

2ν .

= max
k=r+1,...,n

exp(h(k)) ×
1

n

n
∑

k=r+1

µ2
kk

2ν ,

where

h(x) = log[(1 − x−2r/(c0 + x−2r))2m+2x−2ν]

= (2m + 2) log(1 − 1/(c0x
2r + 1)) − 2ν log(x).

Taking derivative gives

h′(x) =
2r

x

1

c0x2r + 1
[(2m + 2) −

ν

r
(c0x

2r + 1)].

Hence for any given positive integer n1, if x ≤ n1 and m ≥ ν
2r (c0n

2r
1 + 1) − 1, h(x) is

increasing and so is exp(h(x)), and

exp(h(x)) ≤ exp((h(n1)) = (1 − 1/(c0n
2r
1 + 1))2m+2n−2ν

1 .

29

On [n1 + 1, n],
exp(h(x)) ≤ (1 − 1/(c0n

2r + 1))2m+2n−2ν
1 .

Putting them together we get for any given n1 and m ≥ ν
2r (c0n

2r
1 + 1) − 1,

bias2(m,S; f) ≤ Mn−2ν
1 [2(1 − 1/(c0n

2r + 1))2m+2]

which is of the order O(n−2ν
1) for n1 → ∞ and n1 ≤ n.

Now let’s deal with the variance term. For any n1 > r,

variance(m,S;σ2) =
σ2

n
{r +

n
∑

k=r+1

[1 − (1 − λk)
m+1]2

≤
σ2n1

n
+

1

n

n
∑

k=n1+1

[1 − (1 − λk)
m+1]2 := I1 + I2.

Because (1 − x)a ≥ 1 − ax for any x ∈ [0, 1] and a ≥ 1,

1 − (1 − λk)
m+1 ≤ 1 − [1 − (m + 1)λk] = (m + 1)λk.

It follows that

I2 ≤
1

n

n
∑

k=n1+1

(m + 1)2λ2
k ≈

(m + 1)2

n

n
∑

k=n1+1

1

(c0k2r + 2)2

≤
(m + 1)2

n

n
∑

k=n1+1

1

(c0k2r)2
≤

(m + 1)2

n

∫ ∞

n1

1

(c0x2r)2
dx

=
(m + 1)2

c2
0(4r − 1)n

n1/n
4r
1 ≤ O(n1/n),

if we take m = m(n1) = ν
2r (c0n

2r
1 + 1) − 1 = O(n2r

1). Hence for this choice of m(n1),

variance(m(n1),S;σ2) ≤ O(n1/n).

Together with the bound for the bias we get

1

n
MSE ≤ O(n1/n) + O(n−2ν

1),

which is minimized by taking n1 = O(n1/(2ν+1)) and for m(n) = m(n1) = O(n2r/(2ν+1)).
The minimized MSE has the minimax optimal rate O(n−2ν/(2ν+1)) of the smoother func-

tion class W
(ν)
2 . 2

Proof of Proposition 4.
Denote by C(z) = 1[z<0]. We first show that

sup
|z|>γ log(γ−1)

|C(z) − Cγ(z)| = γ/2. (26)

By symmetry, it suffices to consider z > 0,

sup
z>γ log(γ−1)

|C(z) − Cγ(z)| = Cγ(γ log(γ−1)) = exp(− log(γ−1))/2 = γ/2,

30

proving (26).
On the other hand,

∫

|z|≤γ log(γ−1)
|C(z) − Cγ(z)|g(z)dz ≤ sup

z
|g(z)|γ log(γ−1) = O(γ log(γ−1)). (27)

Hence, by (26) and (27),

|E[C(Z) − Cγ(Z)]|

≤ (

∫

|z|>γ log(γ−1)
+

∫

|z|≤γ log(γ−1)
)|C(z) − Cγ(z)|g(z)dz ≤ γ/2 + O(γ log(γ−1))

= O(γ log(γ−1)) (γ → 0).

2

References

[1] Allwein, E., Schapire, R. and Singer, Y. (2001). Reducing multiclass to binary: a
unifying approach for margin classifiers. J. Machine Learning Research 1, 113–141.

[2] Buja, A. (2000). Comment on “Additive logistic regression: a statistical view of
boosting”. Ann. Statist. 28, 387–391.

[3] Breiman, L. (1998). Arcing classifiers. Ann. Statist. 26, 801-824.

[4] Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,
1493-1517.

[5] Breiman, L. (2000). Some infinity theory for predictor ensembles. Tech. Report 579,
Dept. of Statist., Univ. of Calif., Berkeley.

[6] Devroye, L., Gyöye, L., and Lugosi, G. (1996). A probabilistic theory of pattern
recognition. Springer, New York.

[7] Collins, M., Schapire, R.E. and Singer, Y. (2000). Logistic regression, AdaBoost and
Bregman distances. Proc. Thirteenth Annual Conference Computational Learning
Theory.

[8] Dietterich, T.G. (2000). An experimental comparison of three methods for construct-
ing ensembles of decision trees: bagging, boosting, and randomization. Machine
Learning 40, 139–157.

[9] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and
Computation 121, 256–285.

[10] Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proc. Thirteenth International Conference, pp. 148–156. Morgan
Kauffman, San Francisco.

[11] Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Ann. Statist. 29, 1189–1232.

31

[12] Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. Ann. Statist. 28, 337–407 (with discussion).

[13] Geman, S., Bienenstock, E. and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computations 4, 1–58.

[14] Gu, C. (1987). What happens when bootstrapping the smoothing spline? Commun.
Statist. Part A - Theory Meth. 16, 3275–3284.

[15] Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman &
Hall.

[16] Jiang, W. (2000). Process consistency for AdaBoost. Tech. Report, Dept. of Statistics,
Northwestern University.

[17] Loader, C. (1999). Local Regression and Likelihood. Series in Statistics and Comput-
ing. Springer, New York.

[18] Mammen, E. and Tsybakov, A.B. (1999). Smooth discriminant analysis. Ann. Statist.
27, 1808–1829.

[19] Marron, J.S. (1983). Optimal rates of convergence to Bayes risk in nonparametric
discrimination. Ann. Statist. 11, 1142–1155.

[20] Mason, L., Baxter, J. Bartlett, P. and Frean, M. (1999). Functional gradient tech-
niques for combining hypotheses. In Advances in Large Margin Classifiers. MIT Press.

[21] Schapire, R.E. (1990). The strength of weak learnability. Machine Learning 5, 197–
227.

[22] Schapire, R.E., Freund, Y., Bartlett, P. and Lee, W.S. (1998). Boosting the margin: A
new explanation for the effectiveness of voting methods. Ann. Statist. 26, 1651–1686.

[23] Tukey, J.W. (1977). Exploratory data analysis. Addison-Wesley, Reading, MA.

[24] Utreras, F. (1983). Natural spline functions, their associated eigenvalue problem.
Numer. Math. 42, 107–117.

[25] Wahba, G. (1990). Spline Models for Observational Data. Soc. for Industrial and
Applied Mathematics.

[26] Yang, Y. (1999). Minimax nonparametric classification – Part I: rates of convergence.
IEEE Trans. Inform. Theory, 45(7), 2271-2284.

32

