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Deconvolution

The deconvolution problem

Suppose that we have nonnegative observations Z1; : : : ; Zn from a distribution with density

h0(z) =

∫
g(z − x) dF0(x); z ≥ 0;

where g is a known decreasing continuous density on [0;∞) and F0 is the distribution function we want

to estimate.

F0 has support, contained in [0;∞) (i.e., corresponds to nonnegative random variables).

The maximum likelihood estimator (MLE) F̂n of F0 is obtained by maximizing the log likelihood

n∑
i=1

log

∫
g(Zi − x) dF (x);

over all distribution functions F .

Conjecture in part 2 of Groeneboom and Wellner (1992): at an interior point t of the support of F0:

n1=3
{
F̂n(t)− F0(t)

}
−→ cZ;

where Z is the location of the minimum of 2-sided Brownian motion plus a parabola.
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Deconvolution

An important step in proving the conjectured behavior in Groeneboom and Wellner (1992) is to write the

functional ∫
x∈[0;t)

g(t− x) dF̂n(x)

in the form

g(0)F̂n(t)−
∫
x∈[0;t)

{g(t− x)− g(0)} dF̂n(x); (1)

and to show that a centered version of
∫
x∈[0;t){g(t− x)− g(0)} dF̂n(x) is of lower order than g(0)F̂n(t):∫

x∈[0;t){g(t− x)− g(0)} dF̂n(x) is a so-called smooth functional. Note that

g(0)F̂n(t) =

∫
x∈[0;t)

g(0) dF̂n(x);

and that the only crucial difference of the latter integral with the integral in (1) is that the integrand of

the integral in (1) is continuous at x = t. We want in fact to prove that∫
x∈[0;t)

{g(t− x)− g(0)} dF̂n(x)−
∫
x∈[0;t)

{g(t− x)− g(0)} dF0(x) = Op

(
n−1=2

)
;

whereas F̂n(t) itself will have the so-called “cube root” behavior.
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Representation of functionals

Integral equations

Canonical approach: consider the functional

Kt(F ) =

∫
x∈[0;t)

{g(t− x)− g(0)} dF (x);

and let at;F solve the (adjoint, see below) equation

[L∗F (a)] (x) = E
{
at;F (Z)

∣∣ X = x
}

=

∫
z≥x

at;F (z)g(z − x) dz = {g(t− x)− g(0)}1[0;t)(x)−Kt(F ); (2)

where at;F has to be in the range of the score operator:

at;F (z) = [LF (b)] (z) = EF

{
bt;F (X)

∣∣ X + Y = z
}

=

∫
[0;z] bt;F (x)g(z − x) dF (x)

hF (z)
: (3)

If we could solve these equations for F̂n, we would have a representation of the following form:

Kt(F̂n)−Kt(F0) =

∫
at;F̂n

(z) d (Hn −H0) (z):
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Representation of functionals

“Argument”: ∫
at;F̂n

(z) dHn(z) =

∫
x∈[0;∞)

∫
x∈[0;z] g(z − x) bt;F̂n

(x) dF̂n(x)

hF̂n
(z)

dHn(z)

=

∫
x∈[0;∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) bt;F̂n

(x) dF̂n(x) =

∫
x∈[0;∞)

bt;F̂n
(x) dF̂n(x) = 0;

and ∫
at;F̂n

(z) dH0(z) =

∫
at;F̂n

(z)

∫ z

0

g(z − x) dF0(x) dz

=

∫
x∈[0;∞)

∫
z≥x

at;F̂n
(z)g(z − x) dz dF0(x)

=

∫
x∈[0;∞)

{
{g(z − x)− g(0)}1[0;t)(x)−Kt(F̂n)

}
dF0(x)

=

∫
x∈[0;∞)

{g(z − x)− g(0)}1[0;t)(x) dF0(x)−Kt(F̂n)

= Kt(F0)−Kt(F̂n):

Unfortunately, there is generally no bt;F̂n
such that

at;F̂n
(z) = EF̂n

{
bt;F̂n

(X)
∣∣ X + Y = z

}
=

∫
[0;z] bt;F̂n

(x)g(z − x) dF̂n(x)

hF̂n
(z)

:
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Representation of functionals

Solution (first step): We introduce a right-continuous function Bt;F̂n
such that∫

[0;z] g(z − x) dBt;F̂n
(x)

hF̂n
(z)

= at;F̂n
(z); lim

x→∞
Bt;F̂n

(x) = 0;

where Bt;F̂n
is no longer absolutely continuous w.r.t. F̂n and try again:∫

at;F̂n
(z) dHn(z) =

∫
x∈[0;∞)

∫
x∈[0;z] g(z − x) bt;F̂n

(x) dF̂n(x)

hF̂n
(z)

dHn(z)

=

∫
x∈[0;∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dBt;F̂n

(x)
?
= 0

Difficulty: characterization of MLE F̂n tells us that∫
z≥x

g(z − x)

ĥn(z)
dHn(z)

≥ 1;

= 1; if x is a point of mass of F̂n:

Solution (second step): Introduce a function B̄t;F̂n
that is constant on the same intervals as F̂n and equal

to Bt;F̂n
at points of mass of F̂n. Then:∫

x∈[0;∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dB̄t;F̂n

(x) = lim
x→∞

B̄t;F̂n
(x) = lim

x→∞
Bt;F̂n

(x) = 0;

and, hopefully, the following difference will be “small”:∫
x∈[0;∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dB̄t;F̂n

(x)−
∫
x∈[0;∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dBt;F̂n

(x):
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Representation of functionals

Now:

Kt(F̂n)−Kt(F0) =

∫
[0;t)

{g(t− x)− g(0)} dF̂n(x)−
∫

[0;t)

{g(t− x)− g(0)} dF0(x)

=

∫
at;F̂n

(z) d (Hn −H0) (z) +

∫
x∈[0;∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) d

(
B̄t;F̂n

−Bt;F̂n

)
(x):

Solution (third step): Prove that∫
at;F̂n

(z) d (Hn −H0) (z) =

∫
at;F0(z) d (Hn −H0) (z) + op(n

−1=2):

That’s the general plan!
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The integral equation

Example

We consider g(x) = 4(1 − x)31[0;1](x) and F0 the Uniform(0; 1) distribution. Then we get the following

equation in �t;F0(z)
def
=
∫
x∈[0;z) g(z − x) dBt;F0(x):∫ x+1

z=x

at;F0(z) g(z−x) dz =

∫ x+1

z=x

�t;F0(z)

h0(z)
g(z−x) dz = {g(t−x)−g(0)}1[0;t)(x)−Kt(F0):

(4)

Writing � = �t;F0 and B = Bt;F0 and a(x) = �(x)=h0(x) we get by differentiating:

−4a(x) + 12

∫ x+1

z=x

a(z)(1 + x− z)2 dz = 12(1− t + x)2 · 1[0;t)(x); x 6= t; (5)

which leads to the following integral equation, using B(1) = 0,

B(x)− 3
∫ x

0 (1 + u− x)2B(u) du

h0(x)
− 3

∫ 1

z=x

B(z)(1 + x− z)2

h0(z)
dz

+ 9

∫ x

u=0

B(u)

∫ 1+u

z=x

(1 + u− z)2(1 + x− z)2dz

h0(z)
du

+ 9

∫ 1

u=x

B(u)

∫ 1+x

z=u

(1 + u− z)2(1 + x− z)2 dz

h0(z)
du

= −3
4(1− t + x)2 · 1[0;t)(x); x 6= t:
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The integral equation

We can also write this integral equation in the following form:

B(x)− 3

∫ x

0

B(u)(1 + u− x)2 du− 3h0(x)

∫ 1

u=x

B(u)(1 + x− u)2

h0(u)
du

+ 9h0(x)

∫ x

u=0

B(u)

∫ 1+u

z=x

(1 + u− z)2(1 + x− z)2 dz

h0(z)
du

+ 9h0(x)

∫ 1

u=x

B(u)

∫ 1+x

z=u

(1 + u− z)2(1 + x− z)2 dz

h0(z)
du

= −3
4(1− t + x)2h0(x) · 1[0;t)(x); x 6= t: (6)

Introducing the notation

Ct;F0(x) = C(x) =
B(x)

h0(x)
;

this can also be written as an integral equation in C(x):

C(x)− 3

h0(x)

∫ x

0

C(u)(1 + u− x)2 dH0(u)− 3

∫ 1

u=x

C(u)(1 + x− u)2 du

+ 9

∫ x

u=0

C(u)

∫ 1+u

z=x

(1 + u− z)2(1 + x− z)2 dz

h0(z)
dH0(u)

+ 9

∫ 1

u=x

C(u)

∫ 1+x

z=u

(1 + u− z)2(1 + x− z)2 dz

h0(z)
dH0(u)

= −3
4(1− t + x)2 · 1[0;t)(x); x 6= t: (7)
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The integral equation

Lemma 1. Let Bt;F0 and Ct;F0 be the solutions of the integral equation (6) and (7), respectively.

(i) Bt;F0 is non-positive, bounded and continuous on [0; 1] and Bt;F0(0) = Bt;F0(1) = 0. Moreover,

Bt;F0 has a bounded derivative at each point x ∈ (0; 1)\{t}, a jump of size 3
4h0(t) at t, a finite

right derivative at x = 0 and a left derivative, equal to zero, at x = 1.

(ii) Ct;F0 is non-positive and bounded on (0; 1) with a bounded right limit at 0 and a left limit,

equal to zero, at 1. Moreover, Ct;F0 has a bounded derivative at each point x ∈ (0; 1) \ {t}, a

jump of size 3=4 at t, a finite right derivative at x = 0 and a left derivative, equal to zero, at

x = 1.

(iii) at;F0 is bounded on (0; 2) with a bounded right limit at 0 and a left limit, equal to zero, at 2.

Moreover, at;F0 has a bounded derivative at each point z ∈ (0; 2) \ {t}, a jump of size 3=2 at

t, and finite right and left derivatives at z = 0 and z = 2, respectively.
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Current status

The current status model

“Hidden space” variables are (Ti; Xi), Ti; Xi ∈ R, observations are: (Ti;∆i).

Xi is independent of Ti, ∆i = 1{Xi≤Ti}. The Xi are (unobservable) “failure times”.

(Relevant part of) Log likelihood for the distribution function F of Xi:

n∑
i=1

{∆i logF (Ti) + (1−∆i) log (1− F (Ti))} : (8)

Define the empirical processes:

Vn1(t) = n−1
∑
Ti≤t

∆i; Vn2(t) = n−1
∑
Ti≤t

(1−∆i); t ∈ R;

Then the log likelihood (8) for F , divided by n, can be written:∫
logF (u) dVn1(u) +

∫
log{1− F (u)} dVn2(u): (9)
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Current status

How can we determine the local behavior?

Problem: Unlike in
√
n-asymptotics, we do not have global convergence of the (rescaled) log likelihood

process.

The situation is therefore fundamentally different from (1-dimensional) right-censoring, where for example

the Kaplan-Meier estimator converges at
√
n-rate and maximizes a process which converges globally after

rescaling.

But in the current situation we are lucky: convex minorant interpretation of the MLE.

Proposition 1. Let Hn be the greatest convex minorant of the (so-called) cusum diagram

(or cumulative sum diagram), consisting of the set of points

Pn =
{(

Gn(t); Vn1(t)
)
; t ∈ R

}
; Vn1(t) = n−1

n∑
i=1

∆i1(−∞;t](Ti) (10)

where Gn(t) = n−1
∑n

i=1 1(−∞;t](Ti) is the empirical distribution function of the observation times

T1; : : : ; Tn.

Then F̂n is an MLE if and only if, at each observation point t = Ti, F̂n(t) is the left derivative

of Hn at Gn(t). F̂n is uniquely determined at each observation point Ti.
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Current status
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Figure 1: Cusum diagram. Simulation for n = 20. Observation df G of the Ti and df F of the Xi are both uniform.

4



Current status

Local asymptotic behavior

Define

Wn(t) = n−1
n∑
i=1

{∆i − F0(Ti)}
{

1{Ti≤t} − 1{Ti≤t0}
}
; t ∈ R: (11)

Let t0 be such that 0 < F0(t0); G(t0) < 1, and let F0 and G be continuously differentiable at t0, with

strictly positive derivatives f0(t0) and g(t0), respectively.

Then we have a “Kim and Pollard (1990)-type lemma”:

Wn(t) = Op

(
n−2=3

)
+ op

(
(t− t0)2

)
; uniformly for |t− t0| ≤ �: (12)

After rescaling, the MLE F̂n is the slope of the convex minorant of the process

Un(t)
def
= n2=3Wn

(
t0 + n−1=3t

)
+ n−1=3

n∑
i=1

{F0(Ti)− F0(t0}
{

1{Ti≤t} − 1{Ti≤t0}
}
; t ∈ R;

which converges to two-sided (scaled) Brownian motion with a parabolic drift. We can localize, due to

the fact that, for large |t|, the drift in the process Un is dominated by the parabolic drift of

n−1=3
n∑
i=1

{F0(Ti)− F0(t0}
{

1{Ti≤t} − 1{Ti≤t0}
}
∼ 1

2f0(t0)t2; n→∞:
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Current status
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Figure 2: Locally rescaled cusum process
(
n1/3

(
Gn(t0 + n1/3t)−Gn(t0)

)
; Un(t)

)
, with convex minorant, for n1/3|Gn(t0 + n1/3t)−

Gn(t0)| ≤ 1 and t0 = 0:5. Simulation with n = 10; 000. Observation df G of the Ti and df F of the Xi are both uniform.
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Current status

Local limit distribution of MLE F̂n

Using the “Kim and Pollard (1990)-type lemma”:

Wn(t) = Op

(
n−2=3

)
+ op

(
(t− t0)2

)
; uniformly for |t− t0| ≤ �;

we can “localize” the convex minorant and hence its derivative process, yielding the MLE F̂n.

Sketch of derivation of local limit distribution:

1. The localized cusum diagram (
n1=3

(
Gn(t0 + n1=3t)− t0

)
; Un(t)

)
converges in distribution to the Brownian motion cusum diagram:

(g(t0)t; U(t)) ; where U(t) =
√
g(t0)F0(t0) {1− F0(t0)}W (t) + 1

2f0(t0)g(t0)t2; t ∈ R;

and where W is two-sided Brownian motion.

2. Continuous mapping theorem: Convex minorant of localized cusum diagram converges in distribution

to convex minorant of Brownian cusum diagram.

3. Left-derivative of convex minorant of localized cusum diagram converges in distribution (in Skohorod

topology) to left-derivative of convex minorant of Brownian cusum diagram and n1=3{F̂n(t0)−F0(t0)}
is left-derivative of convex minorant of localized cusum diagram at zero.
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Competing risk with current status data

Competing risk model

Generalization of the current status model to the situation where there are more failure causes.

Hidden space variables are (Ti; Xi; Yi), Yi is the failure cause.

Observations are: (Ti;∆i1; : : : ;∆iK), ∆ik = 1{Xi≤Ti;Yi=k}. Define:

Vnk(t) = n−1
n∑
i=1

∆ik1(−∞;t](Ti); Vn;K+1(t) = n−1
n∑
i=1

(1−∆i+) 1(−∞;t](Ti); ∆i+ =

K∑
k=1

∆ik;

We want to estimate the subdistribution functions F0k:

F0k(t) = P {X ≤ t; Y = k} ; k = 1; : : : ; K:

The (relevant part of the) log likelihood for F = (F1; : : : ; FK), divided by n, is:

K∑
k=1

∫
logFk(u) dVnk(u) +

∫
log{1− F+(u)} dVn;K+1(u); F+ =

K∑
k=1

Fk:

The MLE (maximum likelihood estimator) F̂n = (F̂n1; : : : ; F̂nK) can only be computed iteratively.

No direct convex minorant interpretation, as with the MLE for current status data.

2



Competing risk with current status data

Self-induced characterization

The MLE F̂nk can be characterized as the left derivative of the greatest convex minorant of the self-induced

cusum diagram

Pnk =
{(
GF̂n+

(t); Vnk(t)
)
; t ∈ R

}
; Vnk(t) = n−1

n∑
i=1

∆ik1(−∞;t](Ti); (13)

for k = 1; : : : ; K, where

GF̂n+
(t) = n−1

n∑
i=1

1−∆i+

1− F̂n+(Ti)
1(−∞;t](Ti); t < T(n):

Compare with ordinary current status, where F̂n is the left derivative of the greatest convex minorant of

the (not self-induced) cusum diagram

Pn =
{(

Gn(t); Vn1(t)
)
; t ∈ R

}
; Vn1(t) = n−1

n∑
i=1

∆i1(−∞;t](Ti): (14)

Note:

GF̂n+
(t) = Gn(t) + n−1

n∑
i=1

F̂n+(Ti)−∆i+

1− F̂n+(Ti)
1(−∞;t](Ti); t < T(n):

2



Competing risk with current status data
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Figure 3: Cusum diagram {(GF̂n+
(t); Vn1(t)); t ∈ R}. Simulation for n = 100; K = 2. F0k(t) = (k=3){1− e−kt}; T ∼ Unif(0; 1:5).
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History

Some history of work on the local rate

End of 2004: The following fact was proved.

Lemma 2. Let F̂n = (F̂n1; : : : ; F̂nK) be the MLE of F0 = (F01; : : : ; F0K), and let F̂n+ =
∑K

k=1 F̂nk

and, similarly, F0+ =
∑K

k=1 F0k. Moreover, let, for a � ∈ (0; 1),
[
t0 − �; t0 + �

]
be an interval on

which the components F0k have continuous derivatives staying away from zero. Then there exists

for each " > 0 and M > 0 an M1 > 0 so that

P

{
sup

t∈[−M;M ]

n1=3
∣∣∣F̂n+

(
t0 + n−1=3t

)
− F0+

(
t0
)∣∣∣ > M1

}
< "; k = 1; : : : ; K:

This is not enough! To get localization of the F̂nk, we need that for t outside a neighborhood of

order O(n−1=3) of t0 we can replace GF̂n+
(t) by

GF0+(t)
def
= Gn(t) + n−1

n∑
i=1

F0+(Ti)−∆i+

1− F0+(Ti)
1(−∞;t](Ti) ;

up to terms of order op((t− t0)2) in the self-induced cusum diagram:

Pnk =
{(
GF̂n+

(t); Vnk(t)
)
; t ∈ R

}
; Vnk(t) = n−1

n∑
i=1

∆ik1(−∞;t](Ti); (15)

removing the self-inducedness of the coordinate GF̂n+
.

3



History

Solution in September 2005: strengthening of Kim-Pollard-type lemma.

Lemma 3. (Global to local lemma for F̂n+) Let F̂n be the MLE and let, for a � ∈ (0; 1),[
t0 − 2

√
�; t0 + 2

√
�
]

be an interval on which the components F0k have continuous derivatives

staying away from zero. Then, for all t ∈ [t0 − �; t0 + �] we have:∫
{|u−t0|<|t−t0|}

|F̂n+(u)− F0+(u|
1− F̂n+(u)

dGn(u) = n−1=6Op

(
n−1=2 ∨ |t− t0|3=2

)
; uniformly in t ∈ [t0−�; t0+�]:

Note: n−1=6Op

(
n−1=2 ∨ |t− t0|3=2

)
= Op(n

−2=3) if |t− t0| = Op(n
−1=3).

Corollary 1. (Tightness of n1=3{F̂n(t0 + n−1=3t) − F0(t0)}) Let the conditions of Lemma 3 be

satisfied. Then:

(i) (Replacement of GF̂n+
by GF0+)

GF̂n+
(t) = GF0+(t) + n−1=6Op

(
n−1=2 ∨ |t− t0|3=2

)
; uniformly in t ∈ [t0 − �; t0 + �]:

(ii) For each " > 0 and M > 0 there exists an M1 > 0 so that

P

{
sup

t∈[−M;M ]

n1=3
∣∣∣F̂nk(t0 + n−1=3t

)
− F0k

(
t0
)∣∣∣ > M1

}
< "; k = 1; : : : ; K:
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Figure 4: Localized cusum diagram
{(
n1/3(GF̂n+

(t)−GF̂n+
(t0)); n

2/3
{
Vn1(t)− Vn1(t0)−

∫ t

t0
F01(t0) dGF̂n+

(u)
})

; t ∈ R
}

, t0 = 0:5; n =

10; 000. Red curve: n2/3
∫ t

t0
{F̂n1(t0)− F01(u)} dGF̂n+

(u). If t < t0:
∫ t

t0
{F̂n1(u)− F01(t0)} dGF̂n+

(u)
def
= −

∫
[t,t0]
{F̂n1(u)− F01(t0)} dGF̂n+

(u).
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Figure 5: Localized cusum diagram with GF̂n+
replaced by GF0+ , t0 = 0:5; n = 10; 000. Red curve: n2/3

∫ t

t0
{F̂n1(u) − F01(t0)} dGF0+(u). If

t < t0:
∫ t

t0
{F̂n1(u)− F01(t0)} dGF0+(u)

def
= −

∫
[t,t0]
{F̂n1(u)− F01(t0)} dGF0+(u).

3



Summary of global to local argument

Summary of the global to local argument

The MLE maximizes a global criterion. To extract the local limit behavior from this, we have to use some

kind of characterization of the solution, for example a convex duality criterion.

1. In the case of simple current status data, this leads to a convex minorant characterization, which can

be used for the determining the local behavior of the MLE.

2. In the case of competing risk with current status data, this leads to a self-induced convex minorant

characterization, involving the sum F̂n+ of the individual MLE estimators F̂nk for the several subdis-

tribution functions F0k. To get localization of the F̂nk, we need that for t outside a neighborhood of

order O(n−1=3) of t0 we can replace GF̂n+
(t) by

GF0+(t)
def
= Gn(t) + n−1

n∑
i=1

F0+(Ti)−∆i+

1− F0+(Ti)
1(−∞;t](Ti) ;

up to terms of order op((t− t0)2) in the self-induced cusum diagram:

Pnk =
{(
GF̂n+

(t); Vnk(t)
)
; t ∈ R

}
; Vnk(t) = n−1

n∑
i=1

∆ik1(−∞;t](Ti); (16)

to get rid of the self-inducedness of the coordinate GF̂n+
in the tightness argument.

This is accomplished by the global to local lemma.
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Limit distribution for competing risk

Limit distribution for competing risk

• First prove uniqueness of the limiting process, using tightness argument (Hardest part!)

• Localize characterization of limit process.

• Take subsequences of localized processes, based on a samples of size n, on [−m;m]. By tightness

(using local rate result) there is a further subsequence that converges to some limit. Using a diagonal

argument, it follows that there is a limit on R. Here we go from local to global!

• By the continuous mapping theorem the limit must satisfy the limit characterization on [−m;m] for

each m ∈ N.

• Letting m→∞ gives existence of the limiting process (almost for free!)

• By uniqueness of the limiting process, all subsequences converge to the same limit
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