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Deconvolution

The deconvolution problem

Suppose that we have nonnegative observations Z1, . . . , Zn from a distribution with density

h0(z) =

∫
g(z − x) dF0(x), z ≥ 0,

where g is a known decreasing continuous density on [0,∞) and F0 is the distribution function we want

to estimate.

F0 has support, contained in [0,∞) (i.e., corresponds to nonnegative random variables).

The maximum likelihood estimator (MLE) F̂n of F0 is obtained by maximizing the log likelihood

n∑
i=1

log

∫
g(Zi − x) dF (x),

over all distribution functions F .

Conjecture in part 2 of Groeneboom and Wellner (1992): at an interior point t of the support of F0:

n1/3
{
F̂n(t)− F0(t)

}
−→ cZ,

where Z is the location of the minimum of 2-sided Brownian motion plus a parabola.
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Deconvolution

An important step in proving the conjectured behavior in Groeneboom and Wellner (1992) is to write the

functional ∫
x∈[0,t)

g(t− x) dF̂n(x)

in the form

g(0)F̂n(t)−
∫
x∈[0,t)

{g(t− x)− g(0)} dF̂n(x), (1)

and to show that a centered version of
∫
x∈[0,t){g(t− x)− g(0)} dF̂n(x) is of lower order than g(0)F̂n(t):∫

x∈[0,t){g(t− x)− g(0)} dF̂n(x) is a so-called smooth functional. Note that

g(0)F̂n(t) =

∫
x∈[0,t)

g(0) dF̂n(x),

and that the only crucial difference of the latter integral with the integral in (1) is that the integrand of

the integral in (1) is continuous at x = t. We want in fact to prove that∫
x∈[0,t)

{g(t− x)− g(0)} dF̂n(x)−
∫
x∈[0,t)

{g(t− x)− g(0)} dF0(x) = Op

(
n−1/2

)
,

whereas F̂n(t) itself will have the so-called “cube root” behavior.

1



Representation of functionals

Integral equations

Canonical approach: consider the functional

Kt(F ) =

∫
x∈[0,t)

{g(t− x)− g(0)} dF (x),

and let at,F solve the (adjoint, see below) equation

[L∗F (a)] (x) = E
{
at,F (Z)

∣∣ X = x
}

=

∫
z≥x

at,F (z)g(z − x) dz = {g(t− x)− g(0)}1[0,t)(x)−Kt(F ), (2)

where at,F has to be in the range of the score operator:

at,F (z) = [LF (b)] (z) = EF

{
bt,F (X)

∣∣ X + Y = z
}

=

∫
[0,z] bt,F (x)g(z − x) dF (x)

hF (z)
. (3)

If we could solve these equations for F̂n, we would have a representation of the following form:

Kt(F̂n)−Kt(F0) =

∫
at,F̂n

(z) d (Hn −H0) (z).
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Representation of functionals

“Argument”: ∫
at,F̂n

(z) dHn(z) =

∫
x∈[0,∞)

∫
x∈[0,z] g(z − x) bt,F̂n

(x) dF̂n(x)

hF̂n
(z)

dHn(z)

=

∫
x∈[0,∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) bt,F̂n

(x) dF̂n(x) =

∫
x∈[0,∞)

bt,F̂n
(x) dF̂n(x) = 0,

and ∫
at,F̂n

(z) dH0(z) =

∫
at,F̂n

(z)

∫ z

0

g(z − x) dF0(x) dz

=

∫
x∈[0,∞)

∫
z≥x

at,F̂n
(z)g(z − x) dz dF0(x)

=

∫
x∈[0,∞)

{
{g(z − x)− g(0)}1[0,t)(x)−Kt(F̂n)

}
dF0(x)

=

∫
x∈[0,∞)

{g(z − x)− g(0)}1[0,t)(x) dF0(x)−Kt(F̂n)

= Kt(F0)−Kt(F̂n).

Unfortunately, there is generally no bt,F̂n
such that

at,F̂n
(z) = EF̂n

{
bt,F̂n

(X)
∣∣ X + Y = z

}
=

∫
[0,z] bt,F̂n

(x)g(z − x) dF̂n(x)

hF̂n
(z)

.
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Representation of functionals

Solution (first step): We introduce a right-continuous function Bt,F̂n
such that∫

[0,z] g(z − x) dBt,F̂n
(x)

hF̂n
(z)

= at,F̂n
(z), lim

x→∞
Bt,F̂n

(x) = 0,

where Bt,F̂n
is no longer absolutely continuous w.r.t. F̂n and try again:∫

at,F̂n
(z) dHn(z) =

∫
x∈[0,∞)

∫
x∈[0,z] g(z − x) bt,F̂n

(x) dF̂n(x)

hF̂n
(z)

dHn(z)

=

∫
x∈[0,∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dBt,F̂n

(x)
?
= 0

Difficulty: characterization of MLE F̂n tells us that∫
z≥x

g(z − x)

ĥn(z)
dHn(z)

≥ 1,

= 1, if x is a point of mass of F̂n.

Solution (second step): Introduce a function B̄t,F̂n
that is constant on the same intervals as F̂n and equal

to Bt,F̂n
at points of mass of F̂n. Then:∫

x∈[0,∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dB̄t,F̂n

(x) = lim
x→∞

B̄t,F̂n
(x) = lim

x→∞
Bt,F̂n

(x) = 0,

and, hopefully, the following difference will be “small”:∫
x∈[0,∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dB̄t,F̂n

(x)−
∫
x∈[0,∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) dBt,F̂n

(x).
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Representation of functionals

Now:

Kt(F̂n)−Kt(F0) =

∫
[0,t)

{g(t− x)− g(0)} dF̂n(x)−
∫

[0,t)

{g(t− x)− g(0)} dF0(x)

=

∫
at,F̂n

(z) d (Hn −H0) (z) +

∫
x∈[0,∞)

∫
z≥x

g(z − x)

ĥn(z)
dHn(z) d

(
B̄t,F̂n

−Bt,F̂n

)
(x).

Solution (third step): Prove that∫
at,F̂n

(z) d (Hn −H0) (z) =

∫
at,F0(z) d (Hn −H0) (z) + op(n

−1/2).

That’s the general plan!
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The integral equation

Example

We consider g(x) = 4(1 − x)31[0,1](x) and F0 the Uniform(0, 1) distribution. Then we get the following

equation in φt,F0(z)
def
=
∫
x∈[0,z) g(z − x) dBt,F0(x):∫ x+1

z=x

at,F0(z) g(z−x) dz =

∫ x+1

z=x

φt,F0(z)

h0(z)
g(z−x) dz = {g(t−x)−g(0)}1[0,t)(x)−Kt(F0).

(4)

Writing φ = φt,F0 and B = Bt,F0 and a(x) = φ(x)/h0(x) we get by differentiating:

−4a(x) + 12

∫ x+1

z=x

a(z)(1 + x− z)2 dz = 12(1− t + x)2 · 1[0,t)(x), x 6= t, (5)

which leads to the following integral equation, using B(1) = 0,

B(x)− 3
∫ x

0 (1 + u− x)2B(u) du

h0(x)
− 3

∫ 1

z=x

B(z)(1 + x− z)2

h0(z)
dz

+ 9

∫ x

u=0

B(u)

∫ 1+u

z=x

(1 + u− z)2(1 + x− z)2dz

h0(z)
du

+ 9

∫ 1

u=x

B(u)

∫ 1+x

z=u

(1 + u− z)2(1 + x− z)2 dz

h0(z)
du

= −3
4(1− t + x)2 · 1[0,t)(x), x 6= t.
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The integral equation

We can also write this integral equation in the following form:

B(x)− 3

∫ x

0

B(u)(1 + u− x)2 du− 3h0(x)

∫ 1

u=x

B(u)(1 + x− u)2

h0(u)
du

+ 9h0(x)

∫ x

u=0

B(u)

∫ 1+u

z=x

(1 + u− z)2(1 + x− z)2 dz

h0(z)
du

+ 9h0(x)

∫ 1

u=x

B(u)

∫ 1+x

z=u

(1 + u− z)2(1 + x− z)2 dz

h0(z)
du

= −3
4(1− t + x)2h0(x) · 1[0,t)(x), x 6= t. (6)

Introducing the notation

Ct,F0(x) = C(x) =
B(x)

h0(x)
,

this can also be written as an integral equation in C(x):

C(x)− 3

h0(x)

∫ x

0

C(u)(1 + u− x)2 dH0(u)− 3

∫ 1

u=x

C(u)(1 + x− u)2 du

+ 9

∫ x

u=0

C(u)

∫ 1+u

z=x

(1 + u− z)2(1 + x− z)2 dz

h0(z)
dH0(u)

+ 9

∫ 1

u=x

C(u)

∫ 1+x

z=u

(1 + u− z)2(1 + x− z)2 dz

h0(z)
dH0(u)

= −3
4(1− t + x)2 · 1[0,t)(x), x 6= t. (7)
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The integral equation

Lemma 1. Let Bt,F0 and Ct,F0 be the solutions of the integral equation (6) and (7), respectively.

(i) Bt,F0 is non-positive, bounded and continuous on [0, 1] and Bt,F0(0) = Bt,F0(1) = 0. Moreover,

Bt,F0 has a bounded derivative at each point x ∈ (0, 1)\{t}, a jump of size 3
4h0(t) at t, a finite

right derivative at x = 0 and a left derivative, equal to zero, at x = 1.

(ii) Ct,F0 is non-positive and bounded on (0, 1) with a bounded right limit at 0 and a left limit,

equal to zero, at 1. Moreover, Ct,F0 has a bounded derivative at each point x ∈ (0, 1) \ {t}, a

jump of size 3/4 at t, a finite right derivative at x = 0 and a left derivative, equal to zero, at

x = 1.

(iii) at,F0 is bounded on (0, 2) with a bounded right limit at 0 and a left limit, equal to zero, at 2.

Moreover, at,F0 has a bounded derivative at each point z ∈ (0, 2) \ {t}, a jump of size 3/2 at

t, and finite right and left derivatives at z = 0 and z = 2, respectively.
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Current status

The current status model

“Hidden space” variables are (Ti, Xi), Ti, Xi ∈ R, observations are: (Ti,∆i).

Xi is independent of Ti, ∆i = 1{Xi≤Ti}. The Xi are (unobservable) “failure times”.

(Relevant part of) Log likelihood for the distribution function F of Xi:

n∑
i=1

{∆i logF (Ti) + (1−∆i) log (1− F (Ti))} . (8)

Define the empirical processes:

Vn1(t) = n−1
∑
Ti≤t

∆i, Vn2(t) = n−1
∑
Ti≤t

(1−∆i), t ∈ R,

Then the log likelihood (8) for F , divided by n, can be written:∫
logF (u) dVn1(u) +

∫
log{1− F (u)} dVn2(u). (9)
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Current status

How can we determine the local behavior?

Problem: Unlike in
√
n-asymptotics, we do not have global convergence of the (rescaled) log likelihood

process.

The situation is therefore fundamentally different from (1-dimensional) right-censoring, where for example

the Kaplan-Meier estimator converges at
√
n-rate and maximizes a process which converges globally after

rescaling.

But in the current situation we are lucky: convex minorant interpretation of the MLE.

Proposition 1. Let Hn be the greatest convex minorant of the (so-called) cusum diagram

(or cumulative sum diagram), consisting of the set of points

Pn =
{(

Gn(t), Vn1(t)
)
, t ∈ R

}
, Vn1(t) = n−1

n∑
i=1

∆i1(−∞,t](Ti) (10)

where Gn(t) = n−1
∑n

i=1 1(−∞,t](Ti) is the empirical distribution function of the observation times

T1, . . . , Tn.

Then F̂n is an MLE if and only if, at each observation point t = Ti, F̂n(t) is the left derivative

of Hn at Gn(t). F̂n is uniquely determined at each observation point Ti.
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Current status
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Figure 1: Cusum diagram. Simulation for n = 20. Observation df G of the Ti and df F of the Xi are both uniform.
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Current status

Local asymptotic behavior

Define

Wn(t) = n−1
n∑
i=1

{∆i − F0(Ti)}
{

1{Ti≤t} − 1{Ti≤t0}
}
, t ∈ R. (11)

Let t0 be such that 0 < F0(t0), G(t0) < 1, and let F0 and G be continuously differentiable at t0, with

strictly positive derivatives f0(t0) and g(t0), respectively.

Then we have a “Kim and Pollard (1990)-type lemma”:

Wn(t) = Op

(
n−2/3

)
+ op

(
(t− t0)2

)
, uniformly for |t− t0| ≤ δ. (12)

After rescaling, the MLE F̂n is the slope of the convex minorant of the process

Un(t)
def
= n2/3Wn

(
t0 + n−1/3t

)
+ n−1/3

n∑
i=1

{F0(Ti)− F0(t0}
{

1{Ti≤t} − 1{Ti≤t0}
}
, t ∈ R,

which converges to two-sided (scaled) Brownian motion with a parabolic drift. We can localize, due to

the fact that, for large |t|, the drift in the process Un is dominated by the parabolic drift of

n−1/3
n∑
i=1

{F0(Ti)− F0(t0}
{

1{Ti≤t} − 1{Ti≤t0}
}
∼ 1

2f0(t0)t2, n→∞.
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Current status
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Figure 2: Locally rescaled cusum process
(
n1/3

(
Gn(t0 + n1/3t)−Gn(t0)

)
, Un(t)

)
, with convex minorant, for n1/3|Gn(t0 + n1/3t)−

Gn(t0)| ≤ 1 and t0 = 0.5. Simulation with n = 10, 000. Observation df G of the Ti and df F of the Xi are both uniform.
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Current status

Local limit distribution of MLE F̂n

Using the “Kim and Pollard (1990)-type lemma”:

Wn(t) = Op

(
n−2/3

)
+ op

(
(t− t0)2

)
, uniformly for |t− t0| ≤ δ,

we can “localize” the convex minorant and hence its derivative process, yielding the MLE F̂n.

Sketch of derivation of local limit distribution:

1. The localized cusum diagram (
n1/3

(
Gn(t0 + n1/3t)− t0

)
, Un(t)

)
converges in distribution to the Brownian motion cusum diagram:

(g(t0)t, U(t)) , where U(t) =
√
g(t0)F0(t0) {1− F0(t0)}W (t) + 1

2f0(t0)g(t0)t2, t ∈ R,

and where W is two-sided Brownian motion.

2. Continuous mapping theorem: Convex minorant of localized cusum diagram converges in distribution

to convex minorant of Brownian cusum diagram.

3. Left-derivative of convex minorant of localized cusum diagram converges in distribution (in Skohorod

topology) to left-derivative of convex minorant of Brownian cusum diagram and n1/3{F̂n(t0)−F0(t0)}
is left-derivative of convex minorant of localized cusum diagram at zero.
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Competing risk with current status data

Competing risk model

Generalization of the current status model to the situation where there are more failure causes.

Hidden space variables are (Ti, Xi, Yi), Yi is the failure cause.

Observations are: (Ti,∆i1, . . . ,∆iK), ∆ik = 1{Xi≤Ti,Yi=k}. Define:

Vnk(t) = n−1
n∑
i=1

∆ik1(−∞,t](Ti), Vn,K+1(t) = n−1
n∑
i=1

(1−∆i+) 1(−∞,t](Ti), ∆i+ =

K∑
k=1

∆ik,

We want to estimate the subdistribution functions F0k:

F0k(t) = P {X ≤ t, Y = k} , k = 1, . . . , K.

The (relevant part of the) log likelihood for F = (F1, . . . , FK), divided by n, is:

K∑
k=1

∫
logFk(u) dVnk(u) +

∫
log{1− F+(u)} dVn,K+1(u), F+ =

K∑
k=1

Fk.

The MLE (maximum likelihood estimator) F̂n = (F̂n1, . . . , F̂nK) can only be computed iteratively.

No direct convex minorant interpretation, as with the MLE for current status data.

2



Competing risk with current status data

Self-induced characterization

The MLE F̂nk can be characterized as the left derivative of the greatest convex minorant of the self-induced

cusum diagram

Pnk =
{(
GF̂n+

(t), Vnk(t)
)
, t ∈ R

}
, Vnk(t) = n−1

n∑
i=1

∆ik1(−∞,t](Ti), (13)

for k = 1, . . . , K, where

GF̂n+
(t) = n−1

n∑
i=1

1−∆i+

1− F̂n+(Ti)
1(−∞,t](Ti), t < T(n).

Compare with ordinary current status, where F̂n is the left derivative of the greatest convex minorant of

the (not self-induced) cusum diagram

Pn =
{(

Gn(t), Vn1(t)
)
, t ∈ R

}
, Vn1(t) = n−1

n∑
i=1

∆i1(−∞,t](Ti). (14)

Note:

GF̂n+
(t) = Gn(t) + n−1

n∑
i=1

F̂n+(Ti)−∆i+

1− F̂n+(Ti)
1(−∞,t](Ti), t < T(n).

2



Competing risk with current status data
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Figure 3: Cusum diagram {(GF̂n+
(t), Vn1(t)), t ∈ R}. Simulation for n = 100, K = 2. F0k(t) = (k/3){1− e−kt}, T ∼ Unif(0, 1.5).
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History

Some history of work on the local rate

End of 2004: The following fact was proved.

Lemma 2. Let F̂n = (F̂n1, . . . , F̂nK) be the MLE of F0 = (F01, . . . , F0K), and let F̂n+ =
∑K

k=1 F̂nk

and, similarly, F0+ =
∑K

k=1 F0k. Moreover, let, for a δ ∈ (0, 1),
[
t0 − δ, t0 + δ

]
be an interval on

which the components F0k have continuous derivatives staying away from zero. Then there exists

for each ε > 0 and M > 0 an M1 > 0 so that

P

{
sup

t∈[−M,M ]

n1/3
∣∣∣F̂n+

(
t0 + n−1/3t

)
− F0+

(
t0
)∣∣∣ > M1

}
< ε, k = 1, . . . , K.

This is not enough! To get localization of the F̂nk, we need that for t outside a neighborhood of

order O(n−1/3) of t0 we can replace GF̂n+
(t) by

GF0+(t)
def
= Gn(t) + n−1

n∑
i=1

F0+(Ti)−∆i+

1− F0+(Ti)
1(−∞,t](Ti) ,

up to terms of order op((t− t0)2) in the self-induced cusum diagram:

Pnk =
{(
GF̂n+

(t), Vnk(t)
)
, t ∈ R

}
, Vnk(t) = n−1

n∑
i=1

∆ik1(−∞,t](Ti), (15)

removing the self-inducedness of the coordinate GF̂n+
.
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History

Solution in September 2005: strengthening of Kim-Pollard-type lemma.

Lemma 3. (Global to local lemma for F̂n+) Let F̂n be the MLE and let, for a δ ∈ (0, 1),[
t0 − 2

√
δ, t0 + 2

√
δ
]

be an interval on which the components F0k have continuous derivatives

staying away from zero. Then, for all t ∈ [t0 − δ, t0 + δ] we have:∫
{|u−t0|<|t−t0|}

|F̂n+(u)− F0+(u|
1− F̂n+(u)

dGn(u) = n−1/6Op

(
n−1/2 ∨ |t− t0|3/2

)
, uniformly in t ∈ [t0−δ, t0+δ].

Note: n−1/6Op

(
n−1/2 ∨ |t− t0|3/2

)
= Op(n

−2/3) if |t− t0| = Op(n
−1/3).

Corollary 1. (Tightness of n1/3{F̂n(t0 + n−1/3t) − F0(t0)}) Let the conditions of Lemma 3 be

satisfied. Then:

(i) (Replacement of GF̂n+
by GF0+)

GF̂n+
(t) = GF0+(t) + n−1/6Op

(
n−1/2 ∨ |t− t0|3/2

)
, uniformly in t ∈ [t0 − δ, t0 + δ].

(ii) For each ε > 0 and M > 0 there exists an M1 > 0 so that

P

{
sup

t∈[−M,M ]

n1/3
∣∣∣F̂nk(t0 + n−1/3t

)
− F0k

(
t0
)∣∣∣ > M1

}
< ε, k = 1, . . . , K.
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Figure 4: Localized cusum diagram
{(
n1/3(GF̂n+

(t)−GF̂n+
(t0)), n

2/3
{
Vn1(t)− Vn1(t0)−

∫ t

t0
F01(t0) dGF̂n+

(u)
})

, t ∈ R
}

, t0 = 0.5, n =

10, 000. Red curve: n2/3
∫ t

t0
{F̂n1(t0)− F01(u)} dGF̂n+

(u). If t < t0:
∫ t

t0
{F̂n1(u)− F01(t0)} dGF̂n+

(u)
def
= −

∫
[t,t0]
{F̂n1(u)− F01(t0)} dGF̂n+

(u).
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Figure 5: Localized cusum diagram with GF̂n+
replaced by GF0+ , t0 = 0.5, n = 10, 000. Red curve: n2/3

∫ t

t0
{F̂n1(u) − F01(t0)} dGF0+(u). If

t < t0:
∫ t

t0
{F̂n1(u)− F01(t0)} dGF0+(u)

def
= −

∫
[t,t0]
{F̂n1(u)− F01(t0)} dGF0+(u).
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Summary of global to local argument

Summary of the global to local argument

The MLE maximizes a global criterion. To extract the local limit behavior from this, we have to use some

kind of characterization of the solution, for example a convex duality criterion.

1. In the case of simple current status data, this leads to a convex minorant characterization, which can

be used for the determining the local behavior of the MLE.

2. In the case of competing risk with current status data, this leads to a self-induced convex minorant

characterization, involving the sum F̂n+ of the individual MLE estimators F̂nk for the several subdis-

tribution functions F0k. To get localization of the F̂nk, we need that for t outside a neighborhood of

order O(n−1/3) of t0 we can replace GF̂n+
(t) by

GF0+(t)
def
= Gn(t) + n−1

n∑
i=1

F0+(Ti)−∆i+

1− F0+(Ti)
1(−∞,t](Ti) ,

up to terms of order op((t− t0)2) in the self-induced cusum diagram:

Pnk =
{(
GF̂n+

(t), Vnk(t)
)
, t ∈ R

}
, Vnk(t) = n−1

n∑
i=1

∆ik1(−∞,t](Ti), (16)

to get rid of the self-inducedness of the coordinate GF̂n+
in the tightness argument.

This is accomplished by the global to local lemma.
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Limit distribution for competing risk

Limit distribution for competing risk

• First prove uniqueness of the limiting process, using tightness argument (Hardest part!)

• Localize characterization of limit process.

• Take subsequences of localized processes, based on a samples of size n, on [−m,m]. By tightness

(using local rate result) there is a further subsequence that converges to some limit. Using a diagonal

argument, it follows that there is a limit on R. Here we go from local to global!

• By the continuous mapping theorem the limit must satisfy the limit characterization on [−m,m] for

each m ∈ N.

• Letting m→∞ gives existence of the limiting process (almost for free!)

• By uniqueness of the limiting process, all subsequences converge to the same limit
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