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Remarks: This current version contains all the material that I managed to cover during
the lecture. The last Section (4.4) goes beyond what we discussed during the course.
Compared with the version of May 20, only minor typos have been corrected and at a few
places some intermediate steps in the derivation have been spelled out. I will continuously
correct mistakes and make smaller changes that should help to understand the material
better. Please inform me about mistakes that you find and tell me about parts that are
particularly obscure any time by sending an email to kuensch@stat.math.ethz.ch.

Originally I planned to have a fifth Chapter on Nonparametric Bayes Methods. I might
add such a chapter later in fall or next year, but I don’t want to commit myself now.

This script uses material from the two books “The Bayesian choice”, 2nd edition, by C.
Robert (Springer 2007) and A. Gelman et al., Bayesian Data Analysis, 3rd edition, Chap-
man & Hall (2013), and from the website by Michael Jordan for his course “Bayesian mod-
eling and inference”, http://www.cs.berkeley.edu/~jordan/courses/260-spring10/,
but the organization and selection of topics and results is my own.



Chapter 1

Basic concepts

1.1 Interpretations of probability

Jakob Bernoulli wrote “Probability is the degree of certainty which is to the certainty as
a part is to a whole”. There are however two somewhat different kinds of (un)certainty,
called “aleatoric uncertainty” and “epistemic uncertainty”. Aleatoric uncertainty (from
Latin “alea” = dice) is the uncertainty about outcomes of repeatable events like throwing
a dice. In such cases, probabilities can be understood as mathematical idealizations of
long-run relative frequencies, which we call the frequentist interpretation of probability.
Epistemic uncertainty (from Greek “episteme” = knowledge) is the uncertainty about
unique events resulting from insufficient knowledge, e.g. about whether a particular stu-
dent will pass an exam or whether the increased release of CO2 is the reason for the
increasing global temperatures in the past 50 years. It does not make sense to imagine
that a student takes the same exam many times, or that there are other earth systems
where humans release CO2 into the atmosphere. In such cases, the probability statements
are based on an evaluation of the available facts and information by an individual and
thus become subjective degrees of belief. Hence this approach is called the subjective
or Bayesian approach (after Thomas Bayes, c.1701-1761). Subjectivity does not go well
together with our ideal of scientific objectivity and thus this interpretation of probability
is often criticized or rejected. However, subjectivity is not the same thing as arbitrariness
– an individual should be able to reveal and explain the information on which his or her
assignment of probabilites is based.

One can argue that aleatoric uncertainty is also a form of epistemic uncertainty about a
physical system: If we knew exactly the position and the momentum of the dice when it
leaves the hand of the player, then we should be able to predict the result. This is however
not particularly helpful, and the distinction between repeatable and unique events remains.

One may ask whether we should measure the two types of uncertainty by the same concept.
There is however an argument showing that in order to act rationally we should measure
epistemic uncertainties by probabilities. I give this argument here. Assume that we have
a finite set Ω of outcomes and that we are in the position of a bookmaker who has to fix
payment odds for all subsets A of Ω other than Ω itself and the empty set. A payment
odds λA ∈ (0,∞) for A is an offer for the following bet: A gambler who places bA francs
on A will win bA/λA francs (in addition to the stake bA that is returned) if A occurs and
−bA francs if A does not occur. The stake bA of the gambler can be negative: Because
we do not make any assumptions on the payment odds, betting a negative amount on A

1



2 Basic concepts

need not be equivalent to betting a positive amount on Ac. The net payoff of the gambler
betting bA on A is therefore

φA(ω) = 1A(ω)
bA
λA
− (1− 1A(ω))bA = bA

1 + λA
λA

(
1A −

λA
1 + λA

)
.

Clearly λA should reflect the bookmakers epistemic uncertainty about the occurence of A.
The following Theorem due to de Finetti shows that if the bookmaker does not assign his
payoff odds according to some probability π on Ω, then a gambler can combine bets on
different events A in such a way that the total payoff is strictly positive no matter what
the outcome ω is.

Theorem 1.1. If there is a probability π on Ω such that λA = π(A)/(1 − π(A)) for all
A, then for any choice of bets (bA), the payoff function V (ω) =

∑
A φA(ω) has expectation

zero with respect to π and thus in particular takes both positive and negative values. If
there is no such probability, then for any function V : Ω→ R there is a choice of bets (bA)
such that V (ω) =

∑
A φA(ω) (in particular the gambler can place bets such that the payoff

is equal to one for any outcome ω).

Proof. The first statement follows by straightforward computation. For the second part,
we use that the set of possible payoff functions is a linear subspace of RΩ, namely the
space spanned by all functions φA. If this subspace is not the whole space, then there is
a nonzero vector π such that for all A∑

ω

π(ω)φA(ω) = 0.

By the definition of φA, this means that for all A

1 + λA
λA

∑
ω∈A

π(ω) =
∑
ω∈Ω

π(ω).

By choosing as A all one-point sets, we see that
∑

ω∈Ω π(ω) 6= 0 because otherwise π would
be the zero vector. Without loss of generality, we assume that

∑
ω∈Ω π(ω) = 1. Choosing

again as A all one-point sets, we also obtain π(ω) > 0 for all ω so that π is indeed a
probability. Moreover,

π(A) =
∑
ω∈A

π(ω) =
λA

1 + λA
.

This theorem does not tell which probability π should be used to fix the payments odds.
If we are in a situation with repeated outcomes according to some probability P , then in
the long run a gambler can make a profit with high probability if π 6= P . But in such a
situation the bookmaker would adjust the payment odds and thus also the underlying π
based on past observations.

In the case where Ω is infinite and one has to show σ-additivity of π, there are some
technical complications that I do not discuss here. See the unpublished note by D. A.
Freedman, “Notes on the Dutch Book Argument” (2003), available at
http://www.stat.berkeley.edu/~census/ on which the theorem of this section is based.
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1.2 Bayes formula

In the discrete case, we have a finite or countable partition (Ai) of Ω and another event
B ⊂ Ω with P (B) > 0 (we tacitly assume that all sets we encounter are measurable).
Then the following Bayes formula is well known and easy to prove

P (Ai | B) =
P (B | Ai)P (Ai)∑

k:P (Ak)>0 P (B | Ak)P (Ak)
(if P (Ai) > 0), = 0 (if P (Ai) = 0).

This formula has both a frequentist and a Bayesian interpretation. In the frequentist
interpretation it gives the relative frequency of the event Ai among those repetitions
where B occurs. In the subjective interpretation it tells how to modify the prior degree of
belief P (Ai) in Ai after observing that B has occured.

A somewhat counterintuitive implication of Bayes formula is the so-called base rate para-
dox: P (B | Ai) � P (B | Ak) does not imply that P (Ai | B) > P (Ak | B). It only holds
that

P (Ai | B)

P (Ak | B)
=
P (B | Ai)
P (B | Ak)

P (Ai)

P (Ak)

and the second factor on the right also influences the value on left. As an example, in case
of a rare disease a positive outcome of a test with small error probabilities still can give a
low probability of actually having the disease.

Various generalizations of Bayes’ formula for continuous situations exist. If (X,Y ) is a
bivariate random vector with joint density fX,Y , then we have the marginal densities

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy, fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx

and the conditional densities

fY |X(y|x) =
fX,Y (x, y)

fX(x)
, fX|Y (x|y) =

fX,Y (x, y)

fY (y)

provided the denominator is neither zero nor infinity, and arbitary otherwise. Note that
we are conditioning on an event with probability zero. Then it is obvious that

fX|Y (x|y) =
fY |X(y|x)fX(x)∫
fY |X(y|x′)fX(x′)dx′

.

The densities above need not be with respect to Lebesgue measure, any product measure
can be used. Moreover, the existence of densities for the marginal PX of X is not needed:
If the conditional distributions of Y given X = x have densities fY |X(y|x), then the
conditional distributions of X given Y = y are absolutely continuous with respect to the
marginal PX , and the density is given by

fY |X(y|x)∫
fY |X(y|x′)PX(dx′)

for those y where the denominator is neither zero nor infinity and arbitrary otherwise.
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1.3 Frequentist vs Bayesian statistics

1.3.1 Prior and posterior

Inferential statistics assumes that the observations x are realizations of a random vector
X and aims to draw conclusions about the underlying distribution based on the observed
values. The set of distributions P which are considered as possible are parametrized by θ:
P = (Pθ; θ ∈ Θ). In parametric statistics Θ is a subset of Rp and thus finite dimensional.
We denote the space where the observations are by X. Usually X = Rn for some n.

Whereas frequentist statistics considers θ to be unknown, but fixed, Bayesian statistics
treats θ as a random variable. Because repeated experiments with varying θ’s drawn
at random usually do not make sense, probability statements about θ have an epistemic
meaning. The uncertainty about θ before seeing the data is described by a prior distri-
bution π on Θ. The distribution Pθ is then the conditional distribution of X given θ,
and we write the density of Pθ therefore as f(x|θ). The conditional density of θ given
X = x is called the posterior which we write as π(.|x). The posterior describes therefore
the uncertainty about θ after seeing the data. By Bayes formula the posterior density is

π(θ | x) =
π(θ)f(x | θ)∫

Θ π(θ′)f(x | θ′)dθ′
.

By some abuse of notation we will denote marginal and conditional densities usually by
f , without indicating with a subscript for which random variables. This will become
clear from the arguments of f and the context. However, the prior density will always be
denoted as π(θ) and the posterior as π(θ|x).

Example 1.1 (Normal means). We discuss the case where we have n i.i.d. observations
from a Gaussian distribution with unknown mean θ and known variance σ2 = 1. If we
choose N (µ, τ2) as prior for θ, the density of the posterior is

π(θ|x1, . . . , xn) =

∏n
i=1 f(xi | θ)π(θ)∫ ∏n
i=1 f(xi | θ′)π(θ′)dθ′

=
exp

(
− 1

2τ2
(θ − µ)2 − 1

2

∑n
i=1(xi − θ)2

)∫
exp

(
− 1

2τ2
(θ′ − µ)2 − 1

2

∑n
i=1(xi − θ′)2

)
dθ′

.

By completing the square in the exponent, the numerator is seen to be equal to

exp

(
−n+ τ−2

2

(
θ − µ+ nτ2x̄

1 + nτ2

)2

− 1

2

n∑
i=1

(xi − µ)2 +
n2τ2

2(1 + nτ2)
(x̄− µ)2

)

where x̄ is the arithmetic mean n−1
∑
xi. The same algebraic manipulation can be made

in the integrand of the denominator. Because the second and third term in the exponent
do not contain θ, they cancel and we are left with a Gaussian integral in the denominator.
We therefore obtain

π(θ|x1, . . . , xn) =

√
n+ τ−2

√
2π

exp

(
−n+ τ−2

2

(
θ − µ+ nτ2x̄

1 + nτ2

)2
)
,

or in other words

θ | (X1 = x1, . . . , Xn = xn) ∼ N
(

1

1 + nτ2
µ+

nτ2

1 + nτ2
x̄,

τ2

1 + nτ2

)
.
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The posterior mean is a convex combination of the prior mean µ and the maximum like-
lihood estimate x̄ and the posterior variance is the prior variance divided by 1 + nτ2.

The above computations could have been simplified by observing that in the numerator
we can ignore any factor which does not contain θ because the same factor will appear in
the denominator and thus cancels. Also the denominator is simply a normalization which
ensures that the posterior density integrates to one. To emphasize this, one usually writes
Bayes fomula as

π(θ | x) ∝ π(θ)f(x | θ)
where the proportionality sign means up to a factor which does not contain θ, but may con-
tain x. Because x is fixed and θ is variable, the second factor on the right is the likelihood
and Bayes formula says that “the posterior is proportional to prior times likelihood”.

The denominator
∫
π(θ)f(x | θ)dθ in Bayes formula for the posterior is the marginal

density f(x) of X, often also called the prior predictive density. The posterior predictive
density for a future observation Y whose distribution depends on X and on θ is

f(y | x) =

∫
f(y | x, θ)π(θ|x)dθ.

Example 1.2 (Normal means, ctd.). The part in the numerator which does not depend
on θ was found to be

exp

(
−1

2

(
n∑
i=1

(xi − µ)2 − n2τ2

1 + nτ2
(x̄− µ)2

))
.

Using 1 = (1, . . . , 1)T , the quadratic form in the exponent can be written as

(x− µ1)T
(
I − τ2

1 + nτ2
11T

)
(x− µ1) = (x− µ1)T

(
I + τ211T

)−1
(x− µ1).

This shows that the prior predictive distribution of (X1, . . . , Xn) is normal with mean µ1
and covariance matrix Σ = I + τ211T . It can also be seen by writing Xi = θ + εi where
θ ∼ N(µ, τ2), εi ∼ N (0, 1) and all variables are independent. Finally, if we write a new
observation Xn+1 as θ + εn+1, it follows that the posterior predictive density is

Xn+1 | (X1 = x1, . . . , Xn = xn) ∼ N
(

1

1 + nτ2
µ+

nτ2

1 + nτ2
x̄, 1 +

τ2

1 + nτ2

)
.

The choice of the prior is usually difficult and it can matter, see e.g. the base rate problem
or the above example of a normal mean where the posterior can be any normal distribution
if we choose the prior mean and variance accordingly. However, one is not allowed to let the
prior depend on the data, it has to be chosen before seeing the data. The required choice
of the prior is a weak point of Bayesian statistics which has lead to much controversy. We
will discuss it in more detail in Chapter 2, including attempts to define non-informative
priors.

1.3.2 Point estimation

As a Bayesian point estimate of θ, we can take any functional of location like expectation,
median or mode of the posterior. If θ is a scalar, the posterior mean is

θ̂ = E(θ | x) =

∫∞
−∞ θπ(θ)f(x | θ)dθ∫∞
−∞ π(θ)f(x | θ)dθ

,
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the posterior median is the solution of∫ θ̂

−∞
π(θ)f(x | θ)dθ =

1

2

∫ ∞
−∞

π(θ)f(x | θ)dθ

and the posterior mode is

θ̂ = arg max
θ
p(θ | x) = arg max

θ
(log π(θ) + log f(x | θ)) .

(arg max denotes the argument where a function takes its maximal value). A unified
approach which covers all these possibilities chooses a loss function L : Θ2 → [0,∞) and
minimizes the expected loss with respect to the posterior:

θ̂ = arg min
t

E(L(t, θ) | x) = arg min
t

∫ ∞
−∞

L(t, θ)π(θ | x)dθ.

Here L(t, θ) quantifies our loss if the true value is θ and our estimate is t. We obtain
the posterior mean if L(t, θ) = (t − θ)2, the posterior median if L(t, θ) = |t − θ| and the
posterior mode if L(t, θ) = 1[−ε,ε]c(t− θ) and we let ε go to zero.

In the frequentist approach, a point estimate T (x) is evaluated in terms of the risk which
is the expected loss with respect to the distribution of x

R(T, θ) = Eθ(L(T (X), θ)) =

∫
X
L(T (x), θ)f(x | θ)dx

which depends on the unknown θ. We would like to minimize the risk for all θ simulta-
neously, but this is not possible because we can achieve a low risk for some value θ0 if
we are prepared to live with a high risk for values far away from θ0 (consider the trivial
estimator T (x) ≡ θ0, regardless of what the data are). To put it differently, if we have two
estimators T1 and T2 which are both reasonable in an intuitive sense then we often have
two values θ1 and θ2 such that

R(T1, θ1) < R(T2, θ1), but R(T1, θ2) > R(T2, θ1).

In other words, whether T1 or T2 is better, depends on the unknown true value of the
parameter θ.

In view of this dilemma, one solution is the minimax approach which looks for the estimator
T which minimizes the maximal risk supθ R(T, θ).

A less pessimistic approach is to look for the estimator T which minimizes the the weighted
risk

R(T,w) =

∫
Θ
R(T, θ)w(θ)dθ.

If
∫
w(θ)dθ <∞, we can assume w.l.o.g. that w is a probability density. The next theorem

shows that the estimator minimizing this weighted risk is then the Bayes estimator with
prior π = w. Therefore we call R(T,w) also the Bayes risk.

Theorem 1.2. Assume that
∫
w(θ)dθ = 1 and choose w as the prior for θ. If

T (x) = arg min
t

E(L(t, θ) | x)

is well defined for almost all x with respect to the prior predictive distribution f(x) =∫
f(x | θ)w(θ)dθ , then T minimizes the weighted risk R(T,w). Any other minimizer T ′

is almost surely equal to T .



1.3 Frequentist vs Bayesian statistics 7

Proof. By exchanging the order of integration, the weighted risk is

R(T,w) =

∫
X

(∫
Θ
L(T (x), θ)f(x|θ)w(θ)dθ

)
dx

By Bayes formula f(x|θ)w(θ) = f(x)π(θ | x) and therefore

R(T,w) =

∫
X

(∫
Θ
L(T (x), θ)f(θ | x)dθ

)
f(x)dx.

In order to minimize the right-hand side, we have to minimize the inner integral for almost
all x.

In particular, we can avoid the discussion whether it is legitimate to consider θ as random
using the prior only to weight the risk for the different values of θ. The posterior is then
just a technical device to compute the estimator which minimizes the weighted risk.

A third approach to address the problem that there is no estimator which minimizes the
risk simultaneously for all θ is admissibility. An estimator T is called admissible if no
other estimator T ′ exists which is uniformly better than T : If R(T ′, θ) ≤ R(T, θ) for all
θ, then we must have R(T ′, θ) = R(T, θ) for all θ. This is allows to discard obviously bad
estimators as inadmissible, but the class of admissible estimators is typically very large. It
is not difficult to show that a Bayes estimator is admissible if the risk is continuous in θ for
any estimator with finite risk and if the prior density is stricly positive everywhere. There
is a large literature showing that under certain conditions any admissible estimator is a
limit (in a sense to be made precise) of Bayes estimators. Such results give a justification
of Bayes estimators from a frequentist point of view.

In the example of normal means the posterior mean θ̂ = 1
1+nτ2

µ + nτ2

1+nτ2
x̄ is obviously

biased:

Eθ(θ̂) =
1

1 + nτ2
µ+

nτ2

1 + nτ2
θ 6= θ ∀θ 6= µ.

This is true in most cases because the choice of a prior usually means that not all values
θ are considered equal. Since also modern frequentist statistics tends to deemphasize
unbiasedness, this is however not a serious disadvantage of Bayesian estimators.

1.3.3 Testing and confidence intervals

Because in Bayesian statistics the parameter is random, it becomes possible to speak
about the “probability that the null hypothesis is true” or the “probability that θ belongs
to some interval”. In frequentist statistics, such statements have no meaning, and one has
to be very careful if one wants to explain the meaning of a p-value or a confidence interval
in words.

Let us first discuss Bayesian testing of a null hypothesis θ ∈ Θ0 ⊂ Θ against the alternative
θ ∈ Θ1 = Θc

0. The posterior probability of the null hypothesis is then

π(Θ0 | x) =

∫
Θ0

π(θ | x)dθ =

∫
Θ0
f(x | θ)π(θ)dθ∫

Θ f(x | θ)π(θ)dθ
.

A Bayesian test will reject the null hypothesis iff π(Θ0 | x) is below some threshold c.
If we quantify the loss in case of an error of the first kind as a1 and in case of an error
of the second kind as a2, then the posterior expected loss of a test ϕ : X → {0, 1}
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is a2(1 − π(Θ0 | x)) if ϕ(x) = 0 and a1π(Θ0 | x) if ϕ(x) = 1. Hence the posterior
expected loss is minimized if ϕ(x) = 0 for π(Θ0 | x) > a2/(a1 + a2) and ϕ(x) = 1 for
π(Θ0 | x) < a2/(a1 + a2), i.e. c = a2/(a1 + a2).

Instead of π(Θ0 | x), Bayesian statistics often considers the Bayes factor which is defined
as the ratio of posterior and the prior odds in favor of the null hypothesis

B(x) =
π(Θ0 | x)

π(Θ1 | x)

π(Θ1)

π(Θ0)
.

If Θ = {θ0, θ1} the Bayes factor is independent of the prior and equal to the likelihood
ratio f(x | θ0)/f(x | θ1) used in the Neyman-Pearson lemma. For composite hypotheses,
the Bayes factor still depends on the prior. If

π0(θ) =
π(θ)1Θ0(θ)

π(Θ0)
, π1(θ) =

π(θ)1Θ1(θ)

π(Θ1)

denote the conditional priors under the null and the alternative, respectively, then

B(x) =

∫
Θ0
f(x | θ)π0(θ)dθ∫

Θ1
f(x | θ)π1(θ)dθ

=
f0(x)

f1(x)
=
f(x | θ ∈ Θ0)

f(x | θ ∈ Θ1)
,

the ratio of the marginal density of x under the null and the alternative hypothesis.

A Bayes factor between 1 and 1
3 is considered as weak evidence against the null, a value

between 1
3 and 0.1 as substantial, a value between 0.1 and 0.01 as strong and a value below

0.01 as decisive, according to Jeffreys (1961).

In some applications the null hypothesis consists of a subset of Lebesgue measure zero,
typically a lower dimensional subset of Θ, e.g. in the case of N (µ, σ2)-observations Θ0 =
{(µ, σ2);µ = µ0}. In this case, if we choose a prior which has a density w.r. to Lebesgue
measure, the prior and the posterior give zero probability to the null hypothesis. Hence
there would be no need to collect data as data cannot change the prior belief in Θ0. In such
situations one should therefore choose a prior which assigns to Θ0 a probability strictly
between 0 and 1. This can be achieved by a mixture

π(dθ) = ρ0π0(dθ) + (1− ρ0)π1(θ)dθ

where π0 is a distribution which is concentrated on Θ0 and ρ0 is the prior probability of
Θ0. Because π0 cannot have a density, we use here the general notation of measure theory.
With such a prior, the posterior probability of Θ0 is

π(Θ0 | x) =
ρ0

∫
Θ0
f(x | θ)π0(dθ)

ρ0

∫
Θ0
f(x | θ)π0(dθ) + (1− ρ0)

∫
Θ f(x | θ)π1(θ)dθ

.

In frequentist statistics, the p-value is taken as a measure of evidence for the null hy-
pothesis. It is defined as the smallest significance level for which the null hypothesis is
still rejected. Although conceptually this is not the same as the posterior probability of
the null hypothesis, it would be nice if these two measures were close at least in the case
where the null and the alternative are a priori equally likely. Let us consider the case
where Θ0 = {θ0}. Then for ρ0 = 1

2

π(Θ0 | x) =
f(x | θ0)

f(x | θ0) +
∫

Θ f(x | θ)π1(θ)dθ
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p-value 0.10 0.05 0.01 0.001
infπ1 π(Θ0 | x) 0.205 0.128 0.035 0.004

infπ1 B(x) 0.256 0.146 0.036 0.004
infπ1∈S π(Θ0 | x) 0.392 0.290 0.109 0.018

infπ1∈S B(x) 0.644 0.409 0.123 0.018

Table 1.1: Testing the null hypothesis µ = µ0 for i.i.d normal observations with mean µ
and known variance: Comparison of p-value and lower bounds on the posterior probability
for the null under arbitrary (row 2) and under symmetric unimodal (row 3) priors for the
alternative. The prior probability of the null hypothesis is equal to 1

2 . Source: Tables 4
and 6 in Berger and Selke, JASA 82 (1987)

which depends on the chosen prior for the alternative, but there is the trivial lower bound

inf
π1
π(Θ0 | x) =

f(x | θ0)

f(x | θ0) + supθ f(x | θ)
.

Numerical comparisons show that in many situations this lower bound is substantially
larger than the p-value, see Table 1.1. This means that the p-value underestimates the
evidence for the null (and therefore overestimates the evidence against the null) even when
the prior is heavily biased towards the alternative. If we assume θ to be scalar and one
restricts π1 to the class S of symmetric unimodal densities, then one can show that

inf
π1∈S

π(Θ0 | x) =
f(x | θ0)

f(x | θ0) + supc
1
2c

∫ θ0+c
θ0−c f(x | θ)dθ

.

The discrepancy between the posterior probability of the null and the p-value is now even
more drastic, see the third row of Table 1.1.

A Bayesian confidence set with level 1 − α is called a (1 − α)-credible set. It is a subset
Cx ⊂ Θ (depending on x) such that

P (θ ∈ Cx | X = x) = π(Cx | x) ≥ 1− α.

Here x is fixed and θ is random, whereas in the frequentist approach θ is fixed and x is
random and we require

Pθ(Cx 3 θ) ≥ 1− α ∀θ ∈ Θ.

(the different orders θ ∈ Cx and Cx 3 θ are chosen to emphasize what is random and what
is fixed).

Among the many (1−α)-credible sets, the one minimizing the volume (Lebesgue measure)
is particularly attractive. It is obtained by taking Cx as a level set of the posterior,
Cx = Lkα , where

Lk = {θ;π(θ | x) ≥ k}, kα = sup{k;π(Lk | x) ≥ 1− α}.

It is thus called a highest posterior density credible set. That it minimizes the volume can
be seen as follows. For simplicity, we assume that π(Lkα | x) = 1 − α. If C is another
(1− α)-credible set, then by the definition of the level set

0 ≥ π(Lkα | x)− π(C | x) =

∫
Lkα∩Cc

π(θ | x)dθ −
∫
Lckα∩C

π(θ | x)dθ

≥ kα
(
|Lkα ∩ Cc| − |Lckα ∩ C|

)
where |C| denotes the volume (Lebesgue measure) of a set C. In high dimensions, the
computation of Lkα can be difficult.
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1.3.4 Bayesian asymptotics

The two basic results in frequentist statistics are the following: Consider an i.i.d. model
Xi ∼ f(x | θ)dx where Θ is an open set in Rp and denote the likelihood function by
Ln(θ) =

∏n
i=1 f(xi | θ), the maximum likelihood estimator (MLE) by θ̂n = arg maxθ Ln(θ)

and the Fisher information by

I(θ) = −Eθ
(

∂2

∂θ∂θT
log f(Xi | θ)

)
.

Then, under regularity conditions, if θ0 is the true parameter,

θ̂n
approx∼ N (θ0,

1

n
I(θ0)−1)

and
2(logLn(θ̂n)− logLn(θ0))

d→ χ2
p.

Bayesian asymptotics says – again under regularity conditions – that for any smooth prior
which is strictly positive in a neighborhood of θ0

θ | (x1, . . . , xn)
approx∼ N (θ̂n,

1

n
I(θ̂n)−1).

Therefore the influence of the prior disappears asymptotically and the posterior is concen-
trated in a

√
1/n neighborhood of the MLE. There is a nice symmetry in the asymptotic

statements, but note again the difference in what is considered fixed and what is random
in the two approaches.

See for instance Schervish (1995), Chap. 7.4 for precise statements and proofs.

1.4 Likelihood Principle

We have seen in this chapter that a basic difference between the frequentist and the
Bayesian approach is that the former considers other values of the data that did not
occur, but could have been obtained, whereas the latter considers only the data that were
actually observed. To justify the frequentist approach, we mention the following quote
from Mosteller and Tukey (1968): “One hallmark of the statistically conscious investigator
is his firm belief that however the survey, experiment or observational program actually
turned out, it could have turned out somewhat differently. Holding such a belief and
taking appropriate actions make effective use of data possible. We need not always ask
explicitly “How much differently ?”, but we should be aware of such questions.”

On the other hand, there are clearly situations where considering data that were not, but
might have been obtained leads to strange conclusions: Consider estimation of an unknown
concentration of a substance in a probe. The probe can be analyzed by two labs, one which
measures with high precision and one with low precision. The high precision lab is however
not always available, due to high demand from other customers. Let us assume that the
standard deviations of both labs are known and equal to 1 and 10 respectively, and that
the chance the precise lab is available is 0.5. If the analysis was made by the imprecise
lab, then I only know that the true value is within ±19.6 from the result. Arguing that
because there was a 50% chance to have the analysis done in the precise lab and that
therefore the standard deviation is

√
0.5 · 12 + 0.5 · 102 = 7.1 is obviously not reasonable.
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This can be formulated as the
Conditionality principle: If an experiment for inference about a parameter θ is chosen
independently from a collection of different possible experiments, then any experiment not
chosen is irrelevant to the inference.

This principle seems quite indisputable. There is another principle which is also not
controversial, namely that observations which differ only in a way which is irrelevant
for the model under consideration should lead to the same conclusion. For instance, in a
model where the observations Xi are i.i.d. ∼ f(x|θ)dx, the time order of the observations is
irrelevant. The time order can give information whether the i.i.d. assumption is reasonable
or not, but once I decide to use the model, the time order of the observation does not
give any information about θ. In mathematical statistics this idea is formalized by the
concept of a sufficient statistic: A function T (x) of the observation x is sufficient for a
model (f(x|θ); θ ∈ Θ) if the conditional distribution of x given T (x) = t does not involve
θ. Then we can formulate

Sufficiency principle: If there are two observations x and y such that T (x) = T (y) for
a sufficient statistic T , then any conclusion about θ should be the same for x and y.

The surprising result due to Birnbaum (1962) is that the two largely non-controversial
principles above imply a third principle which is violated by many frequentist tests and
confidence intervals:

Likelihood principle: If there are two different experiments for inference about the
same parameter θ and if the outcomes x and y from the two experiments are such that
the likelihood functions differ only by a multiplicative constant, then the inference should
be the same.

To understand this principle, let us consider the problem where there is some event with
unknown probability p and I want to test the null hypothesis p ≤ 0.5 against the alternative
p > 0.5. This can be done either by repeating the trial n times and observing the number
X of trials where the event occured, or by repeating the experiment a random number N
times until the event has occured a fixed number of times x. In the first experiment X is
random, n is fixed,

Pp(X = x) =

(
n

x

)
px(1− p)n−x

and and the null hypothesis is rejected if x/n > c1. In the second experiment N is random,
x is fixed and

Pp(N = n) =

(
n− 1

x− 1

)
px(1− p)n−x

because the last occurence of the event must be in the n-th trial, but the other x − 1
occurences can be any time before the n-th trial. In the second experiment, we will reject
the null if n < c2 which is equivalent to x/n > x/c2 =: c3 (remember that x is fixed).
Hence the form of the rejection region is the same in both experiments, but the boundary
values c1 and c3 differ in general because they are computed differently:

n∑
k=c1

(
n

k

)
2−n > α ≥

n∑
k=c1+1

(
n

k

)
2−n,

but
c2−1∑
m=x

(
m− 1

x− 1

)
2−m ≤ α <

c2∑
m=x

(
m− 1

x− 1

)
2−m.
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Hence for a frequentist test it matters whether I observe x successes in n trials in ex-
periment 1 or experiment 2 although the likelihood functions p 7→ Pp(X = x) and
p 7→ Pp(N = n) are in both cases proportional to px(1 − p)n−x. In particular the Bayes
test gives the same answer regardless which experiment was performed.

Note that the maximum likelihood estimator is x/n, regardless whether experiment 1 or
2 was made: Point estimation by maximum likelihood does obey the likelihood principle.

For a proof of Birnbaum’s result, see for instance Section 1.3.3 in Robert’s book.



Chapter 2

Prior distributions

The choice of a prior is a point which has lead to an intensive debate and which is often
considered to be the weak point of the Bayesian approach. We discuss three approaches:
The first one chooses prior distributions such that the posterior can be easily computed.
The second one tries to determine a prior which contains as little information as possible.
The third one tries to choose a prior based on the opinion of one or several experts.

2.1 Conjugate priors

In the example 1.1 a normal prior lead to a normal posterior and therefore the application
of Bayes formula becomes particularly simple: We need to know only how to compute the
mean and variance of the posterior. The following definition generalizes this feature.

Definition 2.1. A parametric family PΞ = {πξ(θ); ξ ∈ Ξ}, Ξ ⊂ Rq, of prior densities is
called conjugate for the model {f(x | θ); θ ∈ Θ} if, for any π ∈ PΞ and any x, π(θ | x) is
again in PΞ.

Written out, this means that to any ξ ∈ Ξ and any x there must be a ξ′ = ξ′(ξ, x) such
that

πξ(θ)f(x | θ) ∝ πξ′(θ).

Computing the posterior amounts then to computing ξ′(ξ, x).

It is obvious that PΞ is conjugate if the following two conditions are satisfied

1. To any x there is a ξ(x) ∈ Ξ such that f(x | θ) ∝ πξ(x)(θ).

2. To any pair ξ1, ξ2 ∈ Ξ there is a ξ3 ∈ Ξ such that πξ1(θ)πξ2(θ) ∝ πξ3(θ).

Example 2.1. Consider the binomial dstribution

f(x | θ) =

(
n

x

)
θx(1− θ)n−x.

It is clear that the above conditions are satisfied if we choose πξ(θ) ∝ θα−1(1−θ)β−1 where
ξ = (α, β) ∈ N2 or ξ ∈ (0,∞)2.

13
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A class of conjugate priors PΞ remains conjugate under repeated sampling, i.e. it is also
conjugate for the model where X1, . . . , Xn are i.i.d., Xi ∼ f(x | θ)dx and n is arbitrary
because for instance

π(θ | x1, x2) ∝ π(θ | x1)f(x2 | θ).
Therefore, if PΞ is conjugate for f(x | θ), for arbitrary, but fixed ξ0 we can write

n∏
i=1

f(xi | θ) =
πξn(x1,...,xn)(θ)

πξ0(θ)
fn(x1, . . . , xn)

where fn is the prior predictive density of X1, . . . , Xn and where ξn maps n-tupels of
observed values to Ξ. In the language of mathematical statistics, ξn is then a sufficient
statistic whose dimension is the same for any n. The existence of a sufficient statistics of
finite dimension has been studied in mathematical statistics, and unfortunately it exists
only for a restricted class of models, thus limiting the use of conjugate priors to such
models. If the set {x; f(x | θ) > 0} does not depend on θ, f must belong to a so-called
exponential family where the densities have the following form

f(x | θ) = exp(c1(θ)T1(x) + . . . cq(θ)Tq(x) + d(θ))h(x).

The conjugate family consists then of densities

πξ(θ) ∝ exp(c1(θ)ξ1 + . . . cq(θ)ξq + d(θ)ξq+1).

The table below gives examples of exponential families together with their conjugate prior
distributions.

Model prior posterior

Binomial(n, θ) Beta(α, β) Beta(α+ x, β + n− x)

Multinomial Dirichlet(α1, . . . , αk) Dirichlet(α1 + x1, . . . , αk + xk)

(n, θ1, . . . , θk)

i.i.d. Poisson(θ) Gamma(γ, λ) Gamma(γ +
∑

i xi, λ+ n)

i.i.d. Normal(µ, 1
τ ) Normal(µ0,

1
n0τ

) × Normal( n
n+n0

x̄+ n0
n+n0

µ0,
1

(n+n0)τ ) ×

θ = (µ, τ) Gamma(γ, λ) Gamma(γ + n
2 , λ+ 1

2

∑
i(xi − x̄)2 + nn0

2(n+n0)(x̄− µ0)2)

Uniform(0, θ) Pareto(α, σ) Pareto(α+ n,max(σ, x1, . . . , xn))

Table 2.1: Most frequently used models with their conjugate priors

The distributions which appear in this table are defined as follows

• Beta(α, β) where α > 0 and β > 0 is the distribution on (0, 1) with the density

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

Here Γ(α) =
∫∞

0 xα−1e−xdx is the Gamma function.

• Gamma(γ, λ) where γ > 0 and λ > 0 is the distribution on (0,∞) with the following
density

f(x) =
λγ

Γ(γ)
xγ−1e−λx.
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• Multinomial(n, p1, . . . , pk) where pi ≥ 0,
∑

i pi = 1 is the discrete distribution on the

set {(x1, . . . , xk) : xi ≥ 0,
∑k

i=1 xi = n} given by

p(x1, . . . , xk) =
n!

(x1)! . . . (xk)!
px11 . . . pxkk .

• Dirichlet(α1, . . . , αk) is the distribution on the simplex {(p1, . . . , pk−1); pi ≥ 0,
∑

i pi ≤
1} with density

f(p1, . . . , pk−1) =
Γ(α1 + . . . , αk)

Γ(α1) · · ·Γ(αk)
pα1−1

1 · · · pαk−1−1
k−1 (1− p1 − . . . pk−1)αk−1.

For k = 2 this is simply the Beta-distribution.

• Pareto(α, σ) (α > 0, σ > 0) is the distribution on [σ,∞) with density

f(x) = ασαx−(α+1).

In the case of the normal distribution, the bivariate prior for the mean µ and the inverse of
the variance, the so-called precision τ is specified as conditional distribution of µ given τ
(the first line in the table) times the marginal of τ (the second line in the table). Written
out, the joint prior density is

π(µ, τ) =

√
n0τ√
2π

exp
(
−n0τ

2
(µ− µ0)2

) λγ

Γ(γ)
τγ−1 exp(−λτ).

The formula for the posterior follows therefore by multiplying the prior with the likelihood
and using the same kind of algebraic manipulations as in Example 1.1. Integrating over τ
we obtain as marginal prior for µ the density

π(µ) ∝
∫ ∞

0
τγ−0.5 exp

(
−τ(λ+

n0

2
(µ− µ0)2)

)
dτ ∝

(
1 +

n0

2λ
(µ− µ0)2

)γ+0.5

i.e. the marginal prior for µ is a shifted and scaled t-distribution with γ + 1/2 degrees of
freedom. Similarly, the marginal posterior of µ is a shifted and scaled t-distribution with
γ + (n+ 1)/2 degrees of freedom.

There are also analogous conjugate distributions for the d-dimensional normal distribution
N d(µ,Ψ

−1) with unknown mean vector µ and unknown precision matrix Ψ. The marginal
of Ψ is then the so-called Wishart distribution, and the conditional distribution of µ given
Ψ is multivariate normal. We refer to the literature for the definitions and the formulae.

Conjugate priors have again parameters, usually called hyperparameters, which have to be
chosen (In the general formula the hyperparameters are called ξi, in Table 2.1 different
symbols are used). Hence using a conjugate prior does not answer the question “which
prior ?”. As typically there are more hyperparameters than parameters, choosing a hyper-
parameter seems even more difficult than choosing a parameter value. Note however that
usually one of the hyperparameters can be regarded as a hypothetical sample size of the
prior: In the general case, it is the parameter ξq+1, in the binomial case it is α+ β, in the
Poisson case it is γ, in the normal case it is n0 for µ and γ for τ . So this parameter can
be determined by asking how much we want to rely on the prior. The other parameters
usually are related to a location parameter of the prior which helps to choose its value.
For instance in the case of a Beta distribution, the mean is α/(α+ β).
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2.2 Noninformative priors

The search for a noninformative prior is motivated by the wish to reduce the subjective
element in a Bayesian analysis. A first attempt defines a uniform prior on Θ to be non-
informative: This has however two drawbacks. First, the uniform distribution on Θ is a
probability only if Θ has finite volume. Second, the uniform distribution is not invari-
ant under different ways to parametrize the same family of distribution. Assume we use
τ = g(θ) as our new parameter where g is invertible and smooth, i.e. θ = g−1(τ). If θ has
density π, then by a standard result from multivariate calculus, τ = g(θ) has the density

λ(τ) = π(g−1(τ))|detDg(g−1(τ))|−1,

where Dg is the matrix whose (ij)-th entry is ∂gi/∂θj , the so-called Jacobi matrix. Hence
if π is constant and g is not linear, then λ is not constant.

As we shall see soon, also other approaches often lead to priors which are of the form
π(θ) ∝ g(θ) where

∫
Θ g(θ)dθ = ∞. Such priors are called improper, and we will discuss

them briefly in a separate subsection below.

2.2.1 Jeffreys prior

Jeffreys proposed to take
π(θ) ∝ det(I(θ))1/2

where I(θ) is the Fisher information matrix that we already encountered in 1.3.4. It is
defined as

I(θ) = −Eθ
(

∂2

∂θ∂θT
log f(Xi | θ)

)
,

and one can show that it is also equal to

I(θ) = Eθ

(
∂

∂θ
log f(Xi | θ)

(
∂

∂θ
log f(Xi | θ)

)T)
.

The rationale for this proposal is the following: Because I(θ)−1 is the asymptotic variance
of the MLE, det(I(θ))−1/2 is proportional to the volume of a set of parameters that cannot
be distinguished based on the data. Hence Jeffreys prior gives approximately equal prob-
abilities to regions with an approximately equal number of “distinguishable parameters”.

Example 2.2. Normal distribution. If X ∼ N (θ, 1), then I(θ) = 1, so Jeffreys prior is
the improper uniform distribution on R. If X ∼ N (0, θ2), I(θ) = 2/θ2, so Jeffreys prior
is π(θ) ∝ θ−1, which is again improper. It is the uniform distribution for the parameter
τ = log θ. If both mean and standard deviation are unknown, X ∼ (µ, σ) and θ = (µ, σ),
then the Fisher information is diagonal with elements σ−2 and 2σ−2 and therefore Jeffreys
prior is proportional to σ−2. In particular, it is not the product of the univariate Jeffreys
priors for µ and σ, contrary to what one would expect.

Example 2.3. Binomial distribution. If X is binomial(n, θ), then

I(θ) = Eθ
(
X

θ2
+

n−X
(1− θ)2

)
=

n

θ(1− θ)

so Jeffreys prior is the Beta(1
2 ,

1
2) and not the uniform distribution. In particular it is

proper.
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We now show that Jeffreys prior is equivariant under different parametrizations. We
consider first the example X ∼ N (0, σ2) and the four parametrizations θ = σ (standard
deviation), θ = σ2 (variance), θ = σ−2 (precision) amd θ = log(σ). The results for these
four choices are summarized in Table 2.2

Parameter ∂2 log f(x|θ)
∂θ2

I(θ) Jeffreys prior dσ
dθ

θ = σ θ2−3x2

θ4
2
θ2

∝ 1
θ = 1

σ 1

θ = σ2 θ−2x2

2θ3
1

2θ2
∝ 1

θ = 1
σ2

1
2
√
θ

θ = σ−2 − 1
2θ2

1
2θ2

∝ 1
θ = σ2 − 1

2θ3/2

θ = log(σ) −2e2θx2 2 ∝ 1 eθ

Table 2.2: Fisher information and Jeffreys prior for different parametrizations of N (0, σ2)

If σ has the density 1
σ , then by the rules of calculus, θ = θ(σ) has the density 1

σ(θ) |
dσ
dθ |.

So for instance θ = σ−2 has the density
√
θ 1

2θ3/2
= 1

2θ = σ2

2 which shows the equivariance.
The other cases can be checked similarly.

The argument in the general multiparameter case τ = g(θ) goes as follows. Denoting the
Jacobi matrices of g and g−1 by Dg and Dg−1, respectively, the chain rule implies

∂

∂τ
log f(x | g−1(τ)) = (Dg−1(τ))T

∂

∂θ
log f(x | g−1(τ)).

Hence by the second form of the Fisher information, the Fisher information with respect
to τ is

Iτ (τ) = (Dg−1(τ))T Iθ(g
−1(τ))Dg−1(τ).

Moreover, Dg−1(τ) is the inverse matrix of Dg(g−1(τ)) and therefore Jeffreys prior for τ
is proportional to

det(Iτ (τ))1/2 = |detDg(g−1(τ))|−1 det(Iθ(g
−1(τ)))1/2,

in accordance with the above result for the transformation of densities.

For a scalar parameter, Jeffreys prior is usually a good choice, although it violates the
likelihood principle because the Fisher information contains an integral over X. However,
for vector parameters, it can have undesirable features.

Example 2.4. Vector normal means: Consider the model where Xi 1 ≤ i ≤ 2n are inde-
pendent and normally distributed with variance σ2 and means E(X2k−1) = E(X2k) = µk.
Jeffreys prior for this model is π(µ1, . . . , µn, σ) ∝ σ−n−1, and the posterior is proportional

σ−2n−1 exp

(
− 1

4σ2

n∑
k=1

(x2k − x2k−1)2

)
· σ−n exp

(
− 1

2σ2

n∑
k=1

(
µk −

x2k + x2k−1

2

)2
)

The second factor integrated with respect to µ1, . . . , µn gives (2π)n/2. Therefore the first
factor is proportional to the marginal posterior of σ, and one finds that

E(σ2 | x1, . . . , x2n) =
1

4(n− 1)

n∑
k=1

(x2k − x2k−1)2.

As n→∞, this converges to σ2

2 . In other words, Jeffreys prior leads to a Bayes estimator
with unsatisfactory frequentist properties.
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2.2.2 Improper priors

If π has infinite total mass, π(θ)f(x | θ) can have finite or infinite total mass, depending
on the likelihood. If the total mass is finite, then we have by formal analogy the posterior
density

π(θ | x) =
π(θ)f(x | θ)∫
π(θ′)f(x | θ′)dθ′

and we can construct Bayesian point estimates, tests and credible intervals as before.
Typically, this can be justified by approximating the improper prior by a sequence of
proper priors πk and showing that the associated sequence of posteriors πk(θ | x) converges
to the above expression. However, even if this convergence holds, paradoxes can occur.
Moreover, in complicated models it is not always easy to check whether π(θ)f(x | θ) has
finite total mass.

2.2.3 Reference priors

The concept of reference priors was introduced by Bernardo (J. Roy. Statist. Soc. 41,
1979) and it has been studied by Berger and Bernardo in a series of papers afterwards. It
has two aspects: A new justification of Jeffeys prior and a distinction between parameters
of interest and nuisance parameters.

We begin with the former and call a prior π noninformative if the difference between the
prior π and the posterior π(. | x) in some distance is maximized. This seems reasonable
because if the data x have the largest possible impact, the impact of the prior is minimal.
In the opposite case, the prior is most informative if it is a point mass at some value θ0

and then the prior and the posterior coincide. There are however two problems with this
idea, the choice of the distance and the dependence on the data x. Bernardo proposed
to use Kullback-Leibler divergence as the distance measure and to integrate over the data
according to the prior predictive distribution f(x) =

∫
Θ f(x | θ)π(θ)dθ. The Kullback-

Leibler divergence between to densities f and g is defined as

K(f, g) =

∫
f(x) log

f(x)

g(x)
dx.

Because in general K(f, g) 6= K(g, f), it is not a true distance, but it satisfies K(f, g) ≥ 0
and K(f, g) = 0 iff f(x) = g(x) for almost all x. Bernardo calls π a reference prior if it
maximizes

I(X,Θ) =

∫
X
f(x)

∫
Θ
π(θ | x) log

π(θ | x)

π(θ)
dθdx =

∫
Θ
π(θ)

∫
X
f(x | θ) log

π(θ)f(x | θ)
π(θ)f(x)

dxdθ

=

∫
Θ
π(θ)

∫
X
f(x | θ) log π(θ | x)dxdθ −

∫
Θ
π(θ) log π(θ)dθ.

In information theory I(X,Θ) is called the mutual information of X and θ, confirming
the idea behind this approach: A prior is most noninformative if the mutual information
of X and θ is maximal. Finding the maximizer is however complicated and there is no
closed form solution because f also depends on π. The problem becomes much simpler if
we look at n i.i.d. observations with density f(x | θ) and let n go to infinity because then
the posterior π becomes independent of the prior: As stated in Subsection 1.3.4, it holds

2 log π(θ | x1, . . . , xn) ≈ −p log(2π) + log det(nI(θ̂))− n(θ̂ − θ)T I(θ̂)(θ̂ − θ)
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where θ̂ is the MLE and p is the dimension of θ. By the result on the (frequentist)
asymptotics of the MLE from the same subsection, θ̂ is approximately N (θ, 1

nI(θ)−1).
Hence ∫

log det(nI(θ̂))

n∏
i=1

f(xi | θ)dxi ≈ p log n+ I(θ̂))

and

n

∫
(θ̂ − θ)T I(θ̂)(θ̂ − θ)

n∏
i=1

f(xi | θ)dxi ≈ p.

Therefore we obtain that∫
log π(θ | x1, . . . , xn)

n∏
i=1

f(xi | θ)dxi ≈
p(log n− log(2π)− 1) + log det I(θ)

2
.

This finally gives the approximation

I((X1, . . . , Xn),Θ) ≈ p(log n− log(2π)− 1)

2
+

∫
Θ
π(θ) log

det I(θ)1/2

π(θ)
dθ.

The integral on the right hand side is maximal for π(θ) = c−1 det I(θ)1/2 because by
concavity of the log it follows that log z ≤ log c + (z − c)/c with equality iff z = c. We
thus have obtained again Jeffreys prior in the limit.

Next, we discuss briefly Bernardo’s approach if θ = (θ1, θ2) can be decomposed in the
parameter of interest θ1 is and the nuisance parameter θ2. In this case, the prior is
factorized as π(θ) = π(θ2 | θ1)π(θ1) and one π(θ2 | θ1) as the Jeffreys prior for the model
with fixed value θ1 and π(θ1) as the Jeffreys prior for the model

f∗(x | θ1) =

∫
Θ2

f(x | θ)π(θ2 | θ1)dθ2.

If π(θ2 | θ1) is not proper, f∗(x | θ) is not a probability density and one needs to restrict
θ2 first to a compact subset. In the end, one then considers the limit of the prior p(θ1) as
this compact subset tends to the whole space.

In the example 2.4 with normal vector means, we saw that Jeffreys prior leads to an
undesirable estimate of σ2. To correct this, we consider σ as the parameter of interest θ1

and µ1, . . . , µn as the nuisance parameter θ2. Then π(µ1, . . . , µn | σ) is flat, and

f∗(x1, . . . , x2n | σ) ∝ σ−n exp

(
− 1

4σ2

n∑
k=1

(x2k − x2k−1)2

)
.

Although this “density” has infinite total mass, a formal calculation gives π(σ) ∝ 1/σ.
Finally, one can check that the prior π(µ1, . . . , µn, σ) ∝ 1/σ gives

E(σ2 | x1, . . . , x2n) =
1

2(n− 2)

n∑
k=1

(x2k − x2k−1)2

which is much more reasonable than what we had with Jeffreys prior.
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2.3 Expert priors

If one takes the view seriously that the prior quantifies knowledge and uncertainty prior to
seeing the data, then it makes sense to try to elicit a prior from one or several experts. How
to do this best has become a research topic in itself which is situated at the intersection
of statistics and psychology. One of the conclusions of research in this area is that expert
judgement is subject to various kinds of heuristics and biases, and that the size of unwanted
effects depends strongly on how questions are phrased. A standard procedure in the case
of a univariate prior is to first elicit a number of summary statistics. In a second step one
then fits a distribution which takes these summaries into account. Taking as summary
statistics the median and the quartiles or the 33% and 67% quantiles seems to be a good
choice: Expectation, standard deviation and extreme quantiles are more difficult to elicit.
Eliciting dependence in multivariate priors is considerably more difficult.

For a more detailed discussion of this issue, see e.g. Garthwaite, Kadane and O’Hagan, J.
Amer. Statist. Assoc. 100 (2005), 680-700.

2.4 Discussion

The justification of a chosen prior remains a difficult issue. The concept of a noninformative
prior is difficult to implement in complex models with many parameters. Therefore, some
subjective choices are often unavoidable. However, in most cases any reasonable choice
leads to similar conclusions because the likelihood tends to dominate – at least if the
number of observations is large (compare section 1.3.4). In any practical application, one
should check that at least marginally the prior is approximately constant in a highest
probability density credible set, or do a sensitivity analysis by varying the prior. Choosing
a prior such that the desired conclusion is obtained is always possible, but this would be
unethical and such a choice would be hard to justify.

The choice of the prior for linear regression models in combination with variable selection
– an important practical case – will be discussed in Section 3.2.

If the number of parameters is large compared to the number of observations, then the
prior often matters. This seems however unavoidable. In that situation, frequentist statis-
tics often uses regularization methods which usually have a Bayesian interpretation. For
instance if we use penalized maximum likelihood estimation

θ̂ = arg max(log f(x | θ) + P (θ))

the penalty P (θ) can usually be interpreted as the log of a prior density.



Chapter 3

Hierarchical Bayes models

3.1 Hierarchical models

Until now we distinguished only between parameters θ and observations x. They are
both random with a joint distribution that is specified by the marginal for θ and the
conditional distribution of x given θ. In hierarchical models the prior for θ depends on
other parameters ξ, called hyperparameters which are given again a prior distribution.
This leads to a triple of random variables (ξ, θ, x) with joint density

π(ξ)π(θ | ξ)f(x | θ).

The basic approach of Bayesian statistics remains unchanged: Once we have specified
the three factors of the joint distribution of the triple (ξ, θ, x), we compute the posterior,
that is the conditional distribution of the unobserved variables (ξ, θ) given the observed
variables by the rules of probability, and then we base our conclusions on this posterior.
Often, the primary interest is in the original parameter θ and then we need the marginal
posterior π(θ | x). There are two ways to compute it.

In the first approach, we begin by computing the marginal prior

π(θ) =

∫
π(θ | ξ)π(ξ)dξ

and then use Bayes formula
π(θ | x) ∝ π(θ)f(x | θ).

This shows in particular that the introduction of hyperparameters is equivalent to a special
choice of a prior for θ.

There are however situations where the approach based on the following formula is com-
putationally easier:

π(θ | x) =

∫
π(θ | x, ξ)π(ξ | x)dξ ∝

∫
π(θ | x, ξ)π(ξ)f(x | ξ)dξ

(the first equality is the law of total probability applied to the conditional distribution
given x). In conjugate situations we have an explicit expression not only for π(θ | x, ξ),
but usually also for f(x | ξ) as we shall show in the examples below. The final integration
over ξ usually cannot be done in closed form, but will need some approximation. Such
approximations will be the topic of Chapter 4.

21
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Example 3.1. Normal means. Let X1, . . . Xn be i.i.d. and N (θ, 1)-distributed, and con-
sider the prior θ ∼ N (µ, τ2). The posterior is then

θ | x1, . . . , xn ∼ N
(

1

1 + nτ2
µ+

nτ2

1 + nτ2
x̄,

τ2

1 + nτ2

)
,

see Example 1.1. This is sensitive to the choice of τ2, so we can consider τ2 as hyperpa-
rameter to which we assign a distribution. (Of course, the posterior is also sensitive to
the choice of µ, but if we want to be noninformative with respect to the prior location, we
would take Jeffreys prior π(θ) ∝ 1). The marginal prior is then a scale mixture of normal
priors which is often heavy-tailed. In particular, if we choose a Gamma(γ, λ) prior for
τ−2, then the marginal prior is

π(θ) ∝
∫

(τ−2)1/2 exp

(
−τ−2 (θ − µ)2

2

)
)(τ−2)γ−1 exp(−λτ−2)d(τ−2)

=

∫
uγ−1/2 exp

(
−(λ+

(θ − µ)2

2
)u

)
du ∝ 1(

λ+ (θ−µ)2

2

)γ+1/2
,

where the last step follows by a change of the integration variable. This is a scaled and
shifted t-density with 2γ degrees of freedom which has heavier tails than the normal distri-
bution. The posterior does not belong to any standard family of distributions, but one can
show that the posterior mode

arg max
θ
−
(
n(θ − x̄)2 + (2γ + 1) log(λ+

(θ − µ)2

2
)

)
is close to x̄ if prior and data are in conflict, that is, if |x̄− µ| is large.

For the second approach, we already know π(θ | τ2, x1, . . . , xn). In Example 1.2 we also
have found that for given τ2, the marginal distribution of (X1, . . . , Xn) is normal with
mean µ1 and covariance matrix Σ = I + τ211T where 1 = (1, . . . , 1)T . To simplify how
f(x1, . . . , xn | τ2) depends on τ2, we consider a linear transformation Y = AX where A
is orthogonal and the first row is equal to 1√

n
1T . Then the Yi are independent and the

Y2, . . . , Yn are standard normal for any value of µ and τ2. Hence we obtain that

f(x1, . . . , xn | τ2) ∝ (1 + nτ2)−1/2 exp

(
− n

2(1 + nτ2)
(x̄− µ)2

)
where ∝ means up to factors which do not depend on τ2. This shows that the marginal
posterior of τ2 has little mass for small values if (x̄ − µ)2 is large, that is if prior mean
and data are in conflict.

Example 3.2. Hierarchical Poisson model. In insurance, the number of claims Xj of
contract j during a given time period can be modeled as independent Poisson(θj) (j =
1, 2, . . . , J) where the θj are i.i.d. and Gamma(γ, λ)-distributed (assuming the contracts
have similar volumes). Then on the highest level we have the parameters (γ, λ), on the
second level (θ1, . . . , θJ) and on the lowest level (X1, . . . , XJ). The joint distribution factors
as

π(γ, λ)

J∏
j=1

π(θj | γ, λ)f(xj | θj).
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In the first approach, we would directly work with the prior

π(θ1, . . . , θJ) =

∫
λJγ

Γ(γ)J

J∏
j=1

θγ−1
j exp(−λ

∑
θj)π(λ, γ)dλdγ.

Again this is not a standard distribution, and in particular the θj are not independent
under this prior. They are only exchangeable, meaning that the density does not change if
we permute the arguments. The second approach is somewhat simpler. First we observe
that conditional on (γ, λ), the (θj , xj) are independent for different j’s and thus

π(θ1, . . . , θJ | γ, λ, x1, . . . , xJ) =

J∏
j=1

π(θj | γ, λ, xj)

and

f(x1, . . . , xJ | γ, λ) =

J∏
j=1

f(xj | γ, λ).

Moreover, by conjugacy

π(θj | γ, λ, xj) =
(λ+ 1)γ+xj

Γ(γ + xj)
θ
γ+xj−1
j exp(−(λ+ 1)θj).

Because we know the normalizing constant for the Gamma density, we also obtain

f(xj | γ, λ) =

∫
e−θj

θ
xj
j

xj !
θγ−1
j e−λθjdθj

λγ

Γ(γ)
=

Γ(γ + xj)

xj !Γ(γ)

λγ

(λ+ 1)γ+xj
.

Finally, because Γ(z + 1) = zΓ(z), we end up with

f(xj | γ, λ) =
(γ + xj − 1) · · · γ

xj · · · 1

(
λ

λ+ 1

)γ ( 1

λ+ 1

)xj
.

This is the negative binomial distribution with parameters γ and p = λ/(λ+1). For integer
γ it is the distribution of the number of failures until γ successes have been observed in a
coin tossing experiment with success parameter p. These results can be used to compute

π(θj | x1, . . . , xn) =

∫
π(θj | γ, λ, xj)π(γ, λ | x1, . . . , xJ)dγdλ

∝
∫
π(θj | γ, λ, xj)

J∏
i=1

f(xi | γ, λ)π(γ, λ)dγdλ.

The last integral cannot be computed in closed form, but because it is only two-dimensional,
approximations are possible. A simpler approach avoiding the computation of an integral
will be discussed below in the section on empirical Bayes methods. The formula above
implies that observations xi 6= xj carry information about θj which seems somewhat coun-
terintuitive: The insurance company uses the number of claims of other people to estimate
the expected number of claims that I will have in a future period. This is justified by the
assumption that I am just one member of a population and the company can estimate the
distribution of the expected number of claims in this population from the number of claims
of other members of this population.
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Example 3.3. The one-way ANOVA model. This model considers outcomes yij for dif-
ferent groups, indexed by i, each group consisting of a number of subjects, indexed by
j:

yij = θi + εij (j = 1, . . . , ni; i = 1, . . . , I),

where the εi,j are i.i.d ∼ N (0, σ2
ε). In order to be consistent with the notation in ANOVA

models, we denote here the observations by y and not by x as in the previous examples. In
the frequentist approach, we can interprete the group effects θi either as unobserved random
variables (random effects) or as unknown parameters (fixed effects). The distinction would
affect the way that the data are analyzed. In the Bayesian approach, we specify in both
interpretations a distribution for (θ1, . . . , θI). In this example one commonly assumes that
the θi are i.i.d ∼ N (µ, τ2). In ANOVA terminology, µ is the grand mean and θi−µ is the
effect of group i. The hyperparameters are ξ = (µ, τ2), and we let µ and τ2 be independent
a priori. In order to simplify the formulae, we assume σ2

ε to be known. In Chapter 4, we
will discuss how to proceed if also σ2

ε is unknown. The joint distribution of all unknown
variables factors as

π(µ)π(τ2)
I∏
i=1

π(θi | µ, τ2)

ni∏
j=1

f(yij | θi).

The priors for µ and τ2 will be chosen later, the other factors are normal densities.

We will proceed according to the second approach. First we observe that

ni∏
j=1

f(yij | θi) = f(ȳi. | θi)f(yi1, . . . , yi,ni−1 | ȳi.),

where ȳi. =
∑ni

j=1 yij/ni denotes the mean in group i. That the second factor on the right
does not depend on θi follows by a similar argument to the one given in Example 3.1. As a
consequence we only need to consider the first factor for computing posterior distributions.

By an argument that should be familiar by now we can show that conditional on (y, µ, τ2)
the θi are independent and

θi | y, µ, τ2 ∼ N
(
niτ

2ȳi. + σ2
εµ

niτ2 + σ2
ε

,
niτ

2 + σ2
ε

σ2
ετ

2

)
.

In order to compute the posterior of the hyperparameters, π(µ, τ2 | y), we use

π(µ, τ2 | y) = π(µ | τ2, y)π(τ | y) = π(µ | τ2, (ȳi.))π(τ | (ȳi.))

and

π(µ | τ2, (ȳi.)) ∝ π(µ)
I∏
i=1

f(ȳi. | µ, τ2).

Because ȳi. = θi + ε̄i., it follows that conditionally on µ and τ2, ȳi. is normal with mean
µ and variance τ2 + σ2

ε/ni. Hence we can choose the improper flat prior π(µ) = 1 and
obtain – again by a standard argument – the proper posterior

µ | τ2, (ȳi.) ∼ N (µ̂, Vµ), µ̂ =

∑I
i=1wiȳi.∑I
i=1wi

, Vµ =
1∑I
i=1wi

, wi =
ni

niτ2 + σ2
ε

.

Finally, we need to compute π(τ2 | (ȳi.)). For this we can either integrate µ out:

π(τ2 | (ȳi.)) ∝
∫
π(µ)π(τ2)

I∏
i=1

f(ȳi. | µ, τ2)dµ
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or use the identity

π(τ2 | (ȳi.)) =
π(µ, τ2 | (ȳi.))
π(µ | τ2, (ȳi.))

∝
π(µ)π(τ2)

∏I
i=1 f(ȳi. | µ, τ2)

π(µ | τ2, (ȳi.))

which holds for an arbitrary value of µ. If we choose µ = µ̂, we obtain

π(τ | (ȳi.)) ∝ π(τ2)V 1/2
µ

I∏
i=1

(
ni

σ2
ε + niτ2

)1/2

exp

(
− ni
σ2
ε + niτ2

(ȳi. − µ̂)2

)
.

This is not a standard distribution. As τ2 → 0, the terms on the right without the prior
π(τ2) have a finite, strictly positive limit. This implies that for a proper posterior we
should choose a prior for τ2 which is integrable at the origin. This rules out Jeffreys
prior, we need some prior information about small values of τ2.

The main interest is in the posterior distribution of θi given y which is given by the formula

π(θi | y) =

∫ ∫
π(θi | y, µ, τ2)π(µ | y, τ2)dµ π(τ2 | y)dτ2.

The inner integral can be computed in closed form. It gives a normal density with mean
equal to a convex combination of all group means ȳ1., . . . ȳI.. The weights in the comvex
combination and the variance depend on τ2, and the integration over τ2 has to be done by
one of the approximate methods that we will discuss in Chapter 4.

3.2 Empirical Bayes methods

In the examples of the preceeding section we have seen that in a hierarchical Bayes model
with conjugate priors, we can compute π(θ | x, ξ) and f(x | ξ) in closed form, but then we
need to use approximations to compute

π(θ | x) ∝
∫
π(θ | x, ξ)f(x | ξ)π(ξ)dξ.

The empirical Bayes method uses instead

π(θ | x) ≈ π(θ | x, ξ̂(x)), ξ̂(x) = arg max
ξ
f(x | ξ).

This means instead of taking a weighted average, we take the value with maximal weight
(assuming π(ξ) is flat around ξ̂(x)). ξ̂(x) is simply the marginal maximum likelihood
estimator of the hyperparameter.

This method avoids not only the computation of the integral, but also the choice of a
hyperprior π(ξ). From a conceptual point of view, it is however not quite satisfactory
because it uses the data x twice: First to select the prior π(θ | ξ̂(x)) and then to compute
the posterior according to Bayes formula. It is also clear that in general the uncertainty
is underestimated if we choose any particular value of ξ instead of averaging over different
plausible values. For these reasons, Bayesians try to avoid empirical Bayes methods as far
as possible, and in fact empirical Bayes methods are usually justified by their frequentist
properties. But from a pragmatic point of view, empirical Bayes methods are useful and
they offer a way to exit from the infinite hierarchy that arises if we acknowledge that the
hyperprior π(ξ) is also uncertain and thus we should introduce another prior to describe
it, etc.

Let us look what empirical Bayes estimation gives for the examples of the previous section.
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Example 3.4. Normal means, ctd. In example 3.1, we have already computed f(x1, . . . , xn |
τ2). Maximizing the result with respect to τ2 is straightworward. We obtain

τ̂2 = max(0, (x̄− µ)2 − 1/n).

This means that if the prior mean µ conflicts with the data, we choose a wider prior. In
particular, we have

E(θ | x1, . . . , xn) = µ (|x̄− µ| ≤ 1/
√
n), = x̄+

1

n(µ− x̄)
(|x̄− µ| ≥ 1/

√
n)

which has the asymptote x̄ as |x̄| → ∞. However, the posterior variance is zero for
|x̄ − µ| ≤ 1/

√
n which is not reasonable, confirming the intuition that empirical Bayes

underestimates the uncertainty.

Example 3.5. Hierarchical Poisson model, ctd. Maximizing the marginal likelihood is
equivalent to minimizing

γ log(1 + 1/λ) +

n∑
j=1

xj log(1 + λ) +
∑
j;xj>0

xj−1∑
k=0

log(γ + k)

with respect to γ and λ. Setting the partial derivative with respect to λ equal to zero gives

γ̂

λ̂
=

1

n

n∑
j=1

xj = x̄,

but setting the partial derivative with respect to γ equal to zero gives an equation that does
not have an explicit solution. If one does not want to find the minimum numerically,
one can use instead of the marginal MLE the marginal moment estimator. By standard
rules from probability theory and results about the moments of the Gamma distribution,
we obtain

E(Xj | γ, λ) = E(E(Xj | θj) | γ, λ) = E(θj | γ, λ) =
γ

λ

and

Var(Xj | γ, λ) = Var(E(Xj | θj) | γ, λ) + E(Var(Xj | θj) | γ, λ) =
γ

λ2
+
γ

λ
=
γ(λ+ 1)

λ2
.

(alternatively, we could use known results for the moments of the negative binomial dis-
tribution). Therefore the marginal moment estimator is

λ̂ =
x̄

S2
n − x̄

, γ̂ = x̄λ̂

where Sn is the sample variance (n− 1)−1
∑

i(xi − x̄)2. The empirical Bayes estimate of
θj is therefore

E(θj | λ̂, γ̂) =
λ̂

λ̂+ n
x̄+

n

λ̂+ n
xj .

It shrinks the individual experience xj towards the average experience of all contracts.

Because λ̂ is a decreasing function of S2
n, the shrinkage is less if the portfolio of all contracts

is heterogeneous. The method breaks down if S2
n ≤ x̄.



3.3 Model selection in linear regression 27

Example 3.6. The one-way ANOVA model, ctd. In order to simplify the formulae, we
assume that σ2

ε = 1 and ni = 1 for all i. Then we need only a single index i. Because
conditionally on µ and τ2, yi = θi + εi is normal with mean µ and variance τ2 + 1, the
marginal MLE is easily seen to be

µ̂ = ȳ, τ̂2 =
1

I

I∑
i=1

(yi − ȳ)2 − 1.

Therefore the empirical Bayes estimator of θi is

E(θi | µ̂, τ̂2) =
I∑I

i=1(yi − ȳ)2
ȳ +

(
1− I∑I

i=1(yi − ȳ)2

)
yi.

Again we have a shrinkage of the individual observation towards the mean of all observa-
tions, and the amount of shrinkage depends on how heterogeneous the sample is. As in
the previous example, there are problems when

∑I
i=1(yi − ȳ)2 < 1 because yi has then a

negative weight.

A famous result of Charles Stein says that if we use the loss function L(t, θ) =
∑

i(ti−θi)2

and if I > 3, then this empirical Bayes estimator has for any θ a smaller risk than the
unbiased estimator θ̂i = yi. This is a frequentist justification for an empirical Bayes
method.

3.3 Model selection in linear regression

We consider here the linear regression model

y = α1 +Xβ + ε, ε ∼ N (0, σ2I).

Here y is an n× 1 vector of responses, 1 = (1, . . . , 1)T , X is the n× p design matrix, α is
the intercept, β the p× 1 regression parameter and ε the n× 1 vector of errors. The j-th
column of X contains the values of the j-th explanatory variable, and we assume that all
columns are centered: XT1 = 0. We consider not only estimation of the parameters, but
also the selection of explanatory variables. Let γ denote an element of {0, 1}p where γj = 1
iff the j-th variable is selected. Furthermore, let βγ be the subvector that contain only
the selected components and Xγ the corresponding submatrix. Then the model indexed
by γ is

y = α1 +Xγβγ + ε.

The number of explanatory variables included in the model γ will be denoted by |γ|. The
unknowns are (γ, βγ , α, σ

2) and we would like to compute the posterior of these unknowns.
For this we need the likelihood and a prior.

3.3.1 g-Prior and posterior for fixed g and γ

The likelihood is

(σ2)−n/2 exp

(
− 1

2σ2
(y − α1−Xγβγ)T (y − α1−Xγβγ)

)
.

Because the columns of X are assumed to be centered, the MLE for α and βγ is

α̂ = ȳ, β̂γ = (XT
γ Xγ)−1XT

γ y,
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and the likelihood is equal to

(σ2)−n/2 exp

(
−

(y − α̂1−Xγ β̂γ)T (y − α̂1−Xγ β̂γ) + n(α̂− α)2 + (βγ − β̂γ)XT
γ Xγ(βγ − β̂γ)

2σ2

)

= (σ2)−n/2 exp

(
−
s2
γ + n(α̂− α)2 + (βγ − β̂γ)XT

γ Xγ(βγ − β̂γ)

2σ2

)
where

s2
γ = (y − α̂1−Xγ β̂γ)T (y − α̂1−Xγ β̂γ)

is the residual sum of squares in the model defined by γ.

In this subsection, we fix the model γ. We assume α to be independent a priori from σ2

and βγ , and we take univariate Jeffreys priors for α and σ2. This means

π(βγ , α, σ
2) = π(α)π(σ2)π(βγ | σ2) ∝ π(βγ | σ2)σ−2.

For the first factor, a popular choice is the so-called g-prior of Zellner

βγ | σ2 ∼ N (0, gσ2(XT
γ Xγ)−1).

Because in regression models the design matrix is considered to be known and fixed, it is
allowed to use it for the prior. The dependence on σ2 is necessary for conjugacy. g > 0 is
a hyperparameter which describes the uncertainty of the prior mean 0. More specifically,
the above formula for the likelihood shows that this prior arises as the posterior from a
flat prior and a response vector zero with the same design matrix Xγ , no intercept and
error variance gσ2. For g large, this prior is therefore weakly informative, and for g →∞,
we approach a flat prior. But we cannot use a flat prior if we want to do model selection
later because this would leave posterior probabilities of different models γ undefined (see
below).

Combining this prior with the likelihood above leads to the posterior

π(βγ , α, σ
2 | y) ∝ (σ2)−n/2−1 exp

(
−
s2
γ

2σ2

)
(gσ2)|γ|/2 det(XT

γ Xγ)1/2

· exp

(
−
n(α̂− α)2 + (βγ − β̂γ)TXT

γ Xγ(βγ − β̂γ) + 1
gβ

T
γ X

T
γ Xγβγ

2σ2

)
.

As in previous examples involving the normal distribution, we complete the square(
βγ − β̂γ

)T
XT
γ Xγ

(
βγ − β̂γ

)
+

1

g
βTγ X

T
γ Xγβγ

=
g + 1

g
(βγ −

g

g + 1
β̂γ)TXT

γ Xγ(βγ −
g

g + 1
β̂γ) +

1

g + 1
β̂Tγ X

T
γ Xγ β̂γ .

Then the posterior becomes

π(βγ , α, σ
2 | y) ∝

( n
σ2

)1/2
exp

(
− n

2σ2
(α̂− α)2

)
·
(
g + 1

gσ2

)|γ|/2
det(XT

γ Xγ)1/2

· exp

(
−g + 1

2gσ2

(
βγ −

g

g + 1
β̂γ

)T
XT
γ Xγ

(
βγ −

g

g + 1
β̂γ

))

· (σ2)−(n+1)/2(g + 1)−|γ|/2 exp

(
−
s2
γ + 1

g+1 β̂
T
γ X

T
γ Xγ β̂γ

2σ2

)
.
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From this we conclude that

βγ | y, σ2 ∼ N
(

g

g + 1
β̂γ ,

gσ2

g + 1
(XT

γ Xγ)−1

)
and

α | y, σ2 ∼ N(ȳ,
σ2

n
),

independently of βγ . Furthermore, integrating with respect to α and βγ gives us

π(σ2 | y) ∝ (σ2)−(n−|γ|−1)/2−1 exp

(
− 1

2σ2
(s2
γ +

1

g + 1
β̂Tγ X

T
γ Xγ β̂γ)

)
.

This means that

σ−2 | y ∼ Gamma

(
n− |γ| − 1

2
,
s2
γ + 1

g+1 β̂
T
γ X

T
γ Xγ β̂γ

2

)
.

By the orthogonality properties of least squares, it follows that

β̂Tγ X
T
γ Xγ β̂γ = s2

0 − s2
γ

where s2
0 = (y − ȳ1)T (y − ȳ1) is the sum of squared errors in the null model γ = 0.

Therefore

s2
γ +

1

g + 1
β̂Tγ X

T
γ Xγ β̂γ =

s2
0(1 + g(1−R2

γ))

g + 1

where

R2
γ = 1−

s2
γ

s2
0

.

is the so-called coefficient of determination of model γ.

3.3.2 Model selection

For Bayesian model selection, we put a prior on the set of possible models γ and compute
the posterior

π(γ | y) =
π(γ)f(y | γ)∑
γ′ π(γ′)f(y | γ′)

where the marginal likelihood f(y | γ) is

f(y | γ) =

∫
f(y | βγ , α, σ2)π(βγ , α, σ

2)dβγdαdσ
2.

If we had chosen an improper prior for βγ , posterior model probabilities would not be
well defined even if the posterior π(βγ | y) is well defined: An improper prior means that
f(y | γ) is only defined up to an arbitrary constant which does not cancel in π(γ | y)
because this constant differs for different models. An improper prior for α and σ2 is
allowed because these two parameters are shared by all models.

For the g-prior, f(y | γ) can be computed in closed form by the same arguments that
were used to compute the posterior π(βγ , α, σ

2 | y). We skip the details and just state the
result:

f(y | γ) ∝ (1 + g)(n−1−|γ|)/2

(1 + g(1−R2
γ))(n−1)/2
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where ∝ means up to factors which contain neither γ nor g.

The posterior model probabilities depend also on the prior. Bayesian model comparison
is usually based on the Bayes factor, the ratio of posterior and prior odds for two models,
which is independent of the prior:

B(γ, γ′) =
π(γ | y)

π(γ′ | y)

π(γ′)

π(γ)
=
f(y | γ)

f(y | γ′)
= (1 + g)(|γ′−|γ|)/2

(
1 + g(1−R2

γ′)

1 + g(1−R2
γ)

)(n−1)/2

.

In particular, the Bayes factor for comparing with the null model is

B(γ, 0) =
(1 + g)(n−|γ|−1)/2

(1 + g(1−R2
γ))(n−1)/2

.

The second factor compares how well the two models fit the data: If γ′ is a sub-model
of γ, that is every variable included in γ′ is also included in γ, then by the definition of
least squares s2

γ′ ≥ s2
γ and R2

γ′ ≤ R2
γ . The second factor is therefore greater (or equal) to

one. However, the first factor is a penalty for the more complex model (measured by the
number of parameters). In particular it is less than one if γ′ is a sub-model of γ. Hence
the Bayes factor balances goodness of fit and complexity when comparing two models.

Clearly, the Bayes factors depend strongly on the chosen value of g. In an attempt to be
non informative, one is tempted to let g tend to infinity. However, as g →∞, B(γ, 0)→ 0
for any γ 6= 0, that is we always choose the null model (“Bartlett’s paradox”). Choosing
any fixed value for g also leads to problems: If one model γ has an excellent fit, one would
expect that the Bayes factor clearly favors this model over the null model. However,
if g is fixed and R2

γ → 1 then B(γ, 0) → (1 + g)(n−1−γ)/2 which is finite although the
evidence in favor of γ as measured for instance by the p value of the F -test goes to infinity
(“Information paradox”).

For prediction of a new observation yn+1 for a given vector xn+1 of explanatory variables,
a Bayesian prefers to use model averaging instead of model selection. For instance, the
prediction of the mean of yn+1 is (for known g) given by

E(yn+1 | y) = ȳ +
g

g + 1

∑
γ

xTn+1,γ β̂γπ(γ | y).

If we want to use posterior model probabilities instead of Bayes factors, we also have to
choose a prior for γ ∈ {0, 1}p. The simplest choice is the uniform prior π(γ) = 2−p for all γ
which means that each explanatory variable is included with probability 1

2 , independently
of the others. For large p his is however informative for the size of the model because
with high prior probability |γ| ≈ p

2 . In order to have an uniform prior for |γ| one can
assume that each explanatory variable is included with probability r where r is unknown
and uniform on (0, 1).

If the number p of variables is large, then computing π(γ | y) for all γ and finding the a
posteriori most likely model is difficult. In such a situation, stochastic search algorithms
which avoid enumerating the whole space {0, 1}p systematically are being recommended.

3.3.3 Unknown g

In order to avoid the paradoxes described in the previous section, we should consider g
to be unknown. We can then either use an empirical Bayes approach or a fully Bayesian
approach with a hyperprior on g.
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In the empirical Bayes approach, we can determine ĝ either separately for each model γ,
or globablly. The former means

ĝ = arg max((n−1−|γ|) log(1+g)−(n−1) log(1+g(1−R2
γ))) = max

(
(n− 1− |γ|)R2

γ

|γ|(1−R2
γ)

− 1, 0

)
.

The ratio on the right is the standard F -test statistics for the null hypothesis βγ = 0. A
large values of this test statistic means that the data are in conflict with the prior mean
zero of βγ and therefore the influence of the prior is reduced. In the latter case, we have

ĝ = arg max
∑
γ

π(γ)f(y | γ)

which has to be computed numerically. In both cases one can show that the information
paradox does not occur any more.

In the fully Bayesian approach it is desirable to have a prior π(g) such that

f(y | γ) ∝
∫

(1 + g)(n−1−|γ|)/2

(1 + g(1−R2
γ))(n−1)/2

π(g)dg

can be computed easily. Moreover, in order to avoid the information paradox, one should
have ∫

(1 + g)(n−1−|γ|)/2π(g)dg =∞ (|γ| ≤ p).

In the case of the minimal sample size n = p+ 2, this means
∫

(1 + g)1/2π(g)dg = ∞. In
the literature, the choices

π(g) ∝ g−3/2 exp(−n/(2g))

and
π(g) ∝ (1 + g)−a/2, (a < 2 ≤ 3)

have been proposed. With the second choice one can express f(y | γ) with the so-called
Gaussian hypergeometric function (Abramowitz and Stegun, 1970, Chapter 15). Moreover,
the shrinkage factor E( g

g+1 | y, γ) which appears in E(βγ | y, γ) can also be expressed with
the same Gaussian hypergeometric function.

For more details on Bayesian model selection in regression, see Feng et al., J. Amer.
Statist. Assoc. 103, 2008, p. 410.
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Chapter 4

Bayesian computation

Until now we have mainly worked with conjugate priors where the posterior is a standard
distribution and moments or quantiles are either known explicitly or can be expressed by
functions that are coded efficiently in R (or other software packages). But in the case
of hierarchical models we already ended up with distributions that are not standard and
contain integrals that cannot be computed analytically. Most applications today involve
hierarchical models with many parameters, and often on the lowest level likelihoods occur
for which conjugate priors do not exist. Thus the posterior is usually high-dimensional with
complex dependencies and does not belong to a standard family of distributions. In order
to compute moments, quantiles, marginal densities or posterior predictive distributions,
we need approximate methods to compute integrals.

4.1 Laplace approximation

Laplace approximations are used for integrals of the form∫
h(θ)q(θ)dθ

where q is a possibly unnormalized smooth density which is concentrated around its mode
θ0 = arg max log q(θ) and where h is an arbitrary smooth function. Because the gradient
of log q at θ0 is zero, we have

log q(θ) ≈ log q(θ0)− 1

2
(θ − θ0)TJ(θ0)(θ − θ0)

where J is minus the Hessian matrix with elements

J(θ)ij = − ∂2

∂θi∂θj
log q(θ).

Because q is maximal at θ0, J(θ0) is positive definite. Expanding h into a first order Taylor
series at θ0, we obtain from the formula for the normalizing constant of a normal density∫

h(θ)q(θ)dθ ≈ h(θ0)q(θ0)

∫
exp

(
−1

2
(θ − θ0)TJ(θ0)(θ − θ0)

)
dθ

+ q(θ0)
∂h

∂θ
(θ0)T

∫
(θ − θ0) exp

(
−1

2
(θ − θ0)TJ(θ0)(θ − θ0)

)
dθ

= h(θ0)q(θ0)(det J(θ0))−1/2(2π)p/2.

33
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If we want to approximate a posterior expectation

E(h(θ) | x) =

∫
h(θ)π(θ)f(x | θ)dθ∫
π(θ)f(x | θ)dθ

we can use the Laplace approximation for the numerator and the denominator separately
and take either q(θ) = f(x | θ) or q(θ) = π(x)f(x | θ). If h is strictly positive, we can also
take q(θ) = h(θ)π(θ)f(x | θ) in the numerator. All these variants lead to slightly different
approximations.

It is clear from the derivation that the Laplace approximation is good if q has a sharp
peak at θ0 and is much smaller everywhere outside of a neighborhood of θ0. For a rigorous
statement of a limit theorem justifying the use of the Laplace approximation, one has to
consider a sequence of integrands that get sharper and sharper, that is J(θ0) → ∞. This
occurs for instance if we consider the posterior in an i.i.d. model with n observations
where

qn(θ) =
n∏
i=1

f(xi | θ),

θ0 is the MLE θ̂n and

Jn(θ) = −
n∑
i=1

∂2

∂θ∂θT
log f(xi | θ)

is the observed Fisher information. By the law of large numbers

Jn(θ) ≈ nI(θ).

Example 4.1. . Bayes factors and BIC. Consider two different models M1 and M2 for
i.i.d data Xj ∼ fi(x | θi)dx with parameters θi ∈ Rpi and priors πi (i = 1, 2). Then the
Bayes factor of model 1 with respect to model 2 is

B12(x1, . . . , xn) =
f(x1, . . . , xn |M1)

f(x1, . . . , xn |M2)
, f(x1, . . . , xn |Mi) =

∫
πi(θi)

n∏
j=1

fi(xj | θi)dθi.

The Laplace expansion gives

f(x1, . . . , xn |Mi) ≈ πi(θ̂i)
n∏
j=1

fi(xj | θ̂i)(det(nIi(θ̂i)))
−1/2(2π)pi/2

where θ̂i is the MLE and Ii(θ) is the Fisher information in Model Mi. By the rules for
the determinant, it follows that

log f(x1, . . . , xn |Mi) ≈
n∑
j=1

log fi(xj | θ̂i)−
pi
2

log n+O(1).

The first term on the right measures how well the model fits the data and the second term
is a penalty for model complexity. The two terms together can thus be used as a model
selection criterion, the so-called the Bayesian information criterion (BIC). The Bayes
factor is then the difference between the BIC values of the two models

Various extensions of the Laplace approximation are possible: If q(θ) is bimodal with
modes at θ0 and θ1 that are well separated, we can use approximations around θ0 and θ1

separately. We can also use higher order Taylor approximations. To simplify the notation,
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assume that θ is one-dimensional. Then a fourth order Taylor approximation of log q
together with ex ≈ 1 + x gives

q(θ) ≈ q(θ0) exp

(
−J(θ0)

2
(θ − θ0)2

)(
1 +

d3 log q(θ0)

dθ3

(θ − θ0)3

6
+
d4 log q(θ0)

dθ4

(θ − θ0)4

24

)
.

The resulting integral can then be computed using results about higher moments of normal
random variables.

4.2 Independent Monte Carlo methods

A Monte Carlo algorithm draws samples from a target distribution π on the basis of
a sequence of i.i.d. uniform random variables (U t). In applications, one uses pseudo-
random numbers generated by a deterministic algorithm instead of truly random uniform
sequences. How to get such pseudo-random numbers is a topic in itself, but we don’t
discuss this issue and just rely on the numbers provided by the software (e.g. by R). We
assume that these pseudo-random numbers are good enough so that our results are not
affected by this lack of true randomness.

Assume (X1, . . . XN ) is an i.i.d. sample from π. We use superscripts to identify the
members of the sample because often π is a distribution on Rp for p > 1 and we use
subscripts to indicate the different components of X. Also in Bayesian applications π is
the posterior distribution, so the variable is θ and not X. But Monte Carlo methods are
also used outside Bayesian statistics, and thus we use here the more familiar notation X
for random variables. By the law of large numbers we can estimate the expectation of an
arbitrary function h(X) by the sample average∫

h(x)π(x)dx = Eπ(h(X)) ≈ H̄N :=
1

N

N∑
t=1

h(Xt).

Moreover, by the Central Limit Theorem

√
N(H̄N −

∫
h(x)π(x)dx)√∑N

t=1(h(Xt)− H̄N )2/N

approx∼ N (0, 1).

This can be used to compute a (frequentist) confidence interval for
∫
h(x)π(x)dx. The

convergence rate N−1/2 is rather slow, but the advantage is that – in contrast to nu-
merical approximations – it is independent of the dimension and doesn’t require h to be
smooth (only

∫
h(x)2π(x)dx <∞ is needed). These are essential advantages in Bayesian

computations.

If π is one-dimensional and we can compute the quantile function

F−1
π (u) = inf{x;Fπ(x) ≥ u}, Fπ(x) =

∫ x

−∞
π(x′)dx′,

then Xt = F−1
π (U t) ∼ π. In higher dimensions we can use the method in principle sequen-

tially to draw first X1 from the first marginal, then X2 from the conditional distribution of
the second component given X1 , etc. In Bayesian statistics this is rarely feasible because
the target π is known only up to a normalizing constant, and marginal or conditional
quantiles cannot be computed explicitly.
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There are two methods which both start by drawing a sample from some other distribu-
tion, the so-called proposal τ , and then convert it to a sample from the target π. The
accept/reject methods assumes that the ratio of densities is bounded:

π(x)

τ(x)
≤M <∞.

If we are given two independent i.i.d. sequences (Y t) and (U t) where Y t ∼ τ and U t ∼
uniform(0,1), then the following algorithm produces an i.i.d. sequence (Xt) where Xt ∼ π:
To start, set t = 1 and s = 1 and repeat the following

• If U s ≤ π(Y s)
Mτ(Y s) set Xt = Y s, t = t+ 1, s = s+ 1 (i.e. accept Y s);

• else set s = s+ 1 whereas t is unchanged (i.e. reject Y s).

To see that this algorithm is correct, we use the heuristic interpretation P(Y ∈ dx) =
τ(x)dx of the density τ . Then by Bayes formula

P(X ∈ dx) = P
(
Y ∈ dx | U ≤ π(Y )

Mτ(Y )

)
∝ P

(
U ≤ π(Y )

Mτ(Y )
| Y ∈ dx

)
P(Y ∈ dx)

=
π(x)τ(x)dx

Mτ(x)
∝ π(x)dx.

The algorithm works for any dimension, and τ and π need to be known only up to nor-
malizing constants. But in practice, the expected number of rejections is large unless τ
is reasonably close to π, and in high dimensions it is usually difficult to find a proposal
which is close to the the target and from which we can simulate.

The second method is called importance sampling. It corrects by weighting the sample
values Y t ∼ τ : ∫

h(x)π(x)dx ≈
∑N

t=1 h(Y t)w(Y t)∑N
t=1w(Y t)

, w(x) ∝ π(x)

τ(x)
.

By the law of large numbers applied to the denominator and the numerator it follows that
almost surely∑N

t=1 h(Y t)w(Y t)∑N
t=1w(Y t)

→
∫
h(x)w(x)τ(x)dx∫
w(x)τ(x)dx

=
const.

∫
h(x)π(x)dx

const.
∫
π(x)dx

=

∫
h(x)π(x)dx.

For the first equality, we need that π(x) > 0 implies τ(x) > 0. One can also show that a
central limit theorem holds where the limiting variance is∫

w(x)2(h(x)−
∫
h(x′)π(x′)dx′)2τ(x)d(x)

(
∫
w(x)τ(x)dx)2

.

This asymptotic variance can easily be estimated from the sample. As with accept/reject,
importance sampling can be used in any dimension and the proposal and the target need
to be known only up to a normalizing constant. The weight function w(x) does not need
to be bounded,

∫
w(x)2τ(x)dx < ∞ is sufficient if h is bounded. Still, if the normalized

weights w(Y t)/
∑

sw(Y s) are far from uniform, the above estimate becomes unreliable.
We therefore need – like for accept/reject – a proposal that is not too far from the target.
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If we want an unweighted sample instead of a weighted one, we can use resampling. We
generate an additional sample (It) which takes values in {1, 2, . . . , N} with probabilities
proportional to the weights (w(Y s)):

P(It = s) =
w(Y s)∑N
r=1w(Y r)

and set
Zt = Y It .

Thus values Y t with large weights will be selected several times whereas those with small
weights are likely to be not selected at all. This is easily seen to be correct because

E

(
N∑
t=1

h(Zt) | Y 1, . . . , Y N

)
=

N∑
t=1

N∑
s=1

P(It = s)h(Y s) = N

∑N
s=1 h(Y s)w(Y s)∑N

r=1w(Y r)
.

Because the additional resampling step always increases the variance and it is not rec-
ommended to use it. However, in Section 4.4.4 we will see a situation where we need an
unweighted sample to proceed in a recursive algorithm.

4.3 Basics of Markov chain Monte Carlo

As mentioned in the previous section, drawing an i.i.d sample from a complicated distri-
bution π is difficult, especially in high dimensions. Markov chain Monte Carlo generates
a sequence of random variables (Xt) which are dependent and such that the distribution
of Xt converges weakly to π as t→∞. Estimation of

∫
h(x)π(x)dx is still based on a law

of large numbers, but now for dependent random variables:∫
h(x)π(x)dx ≈ H̄N,r =

1

N − r

N∑
t=r+1

h(Xt).

Here r is a “burn-in” period which discards values Xt whose distribution is too far from
the target π.

The random variables are constructed recursively: The initial value X0 is arbitrary, and
for each t ≥ 1 Xt is a deterministic function of Xt−1 and a uniform random variable U t

which is independent of X0, . . . , Xt−1

Xt = G(Xt−1, U t).

(In practice, often several uniform variables U t,1, U t,2, . . . , U t,k are used, but this is equiv-
alent). Because the dependence of Xt on previous random variables is only via Xt−1, the
sequence (Xt) is called a Markov chain. The conditional distribution of Xt given Xt−1 is
called the transition kernel P of the chain

P(Xt ∈ A | X0, . . . , Xt−1) = P(Xt ∈ A | Xt−1) = P (Xt−1, A).

It is determined by the function G through

P (x,A) = P(G(x, U) ∈ A) = P(U ∈ {u;G(x, u) ∈ A}).

In particular, P does not depend on t because G is the same for all t. We therefore call
the Markov chain time-homogeneous. In Markov process theory, one usually starts by
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specifying the transition kernel P (x,A), the conditional probability that the next value
of the chain is in A given that the current value is equal to x. It is always possible to
construct a function G such that the above equation is satisfied. Because for Markov chain
Monte Carlo, we need to draw from P (x, .) for arbitrary values x, it is more natural to
start with the concrete construction Xt = G(Xt−1, U t)

In order to use Markov chain Monte Carlo to estimate expected values with respect to the
target π, we need to find a transition kernel P such that we can draw from the distribution
P (x, .) for any x and such that for N → ∞ the arithmetic mean of the h(Xt) converges
to
∫
h(x)π(x)dx. The general theory of Markov chains shows that the second requirement

holds in a wide range of cases if the chain can reach all sets A with π(A) > 0 and if
Xt−1 ∼ π implies that Xt ∼ π. If the second condition holds, we call π an invariant or
stationary distribution for the transition kernel P . Because

P(Xt ∈ A) = E(P(Xt ∈ A | Xt−1)) = E(P(Xt−1, A)),

π is stationary for P if

π(A) =

∫
π(x)P (x,A)dx ∀A,

or, in the case where P (x, .) has the density p(x, y), if

π(y) =

∫
π(x)p(x, y)dx.

There are two basic recipes for constructing a transition kernel P which has a given target
distribution π as stationary distribution. The first one is the so-called Gibbs sampler. For
this we assume that x ∈ Rp and we denote the conditional density of the i-th component
of x, xi given all the other components x, x−i = (xj)j 6=i by πi:

πi(xi | x−i) ∝ π(x)

where ∝ means up to a term which does not contain xi. This means that we can identify πi
by inspecting how the target density π depends on the i-th component. We don’t need any
integration. The densities πi are also called “full conditionals” (because we condition on all
other components). The Gibbs sampler depends on a “visiting schedule” it ∈ {1, 2, . . . , p}
and iterates the following steps for t = 1, 2, . . .

Xt
it ∼ πit(xit | X

t−1
−it )dxit , Xt

−it = Xt−1
−it .

In words, we leave all components of Xt−1 except the one that is actually visited un-
changed, and we update the visited component according to the conditional distribution
of our target. By the definition of the conditional distribution, π is invariant for this
transition kernel. The visiting schedule can be either deterministic or it can randomly
select one of the components. In order that the chain can reach all sets, we have to visit
each possible component infinitely often.

Example 4.2. I.i.d. normal observations. Assume that the Xi are i.i.d ∼ N (µ, 1
τ ) and

that we use the prior

π(µ, τ) ∝ exp
(
−κ

2
(µ− ξ)2

)
τγ−1 exp(−λτ)

with hyperparameter (µ, κ, γ, λ). Because this is not a conjugate prior, the posterior

π(µ, τ | x1, . . . , xn) ∝ τn/2+γ−1 exp
(
−τ

2

∑
(xi − µ)2 − λτ − κ

2
(µ− ξ)2

)
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is not a standard distribution. Because it is a two-dimensional distribution, we can get an
idea about its shape by simply plotting the contours. The Gibbs sampler is also easy to use
because

π(µ | τ, x1, . . . , xn) ∝ exp

(
−τ

2

n∑
i=1

(xi − µ)2 − κ

2
(µ− ξ)2

)
∝ exp

(
−nτ

2
(µ− x̄)2 − κ

2
(µ− ξ)2

)
∝ exp

(
−nτ + κ

2

(
µ− nτ

nτ + κ
x̄− κ

nτ + κ
µ0

)2
)

and

π(τ | µ, x1, . . . , xn) ∝ τn/2+α−1 exp

(
−τ

(
λ+

1

2

n∑
i=1

(xi − µ)2

))
.

Therefore the Gibbs sampler alternates between drawing µ from a normal distribution and
τ from a Gamma distribution. We will illustrate this by a computer demonstration in the
lecture.

The Gibbs sampler requires that we can sample from the full conditionals. Because
these distributions are one-dimensional, this is often possible. If it isn’t, we can use
the Metropolis-Hastings algorithm instead. It is based on the fact that any reversible
distribution is also stationary. Here π is called reversible for the transition kernel P if∫

A
π(x)P (x,B)dx =

∫
B
π(x)P (x,A)dx ∀A,B,

or in other words, if Xt ∼ π, then

P(Xt ∈ A,Xt+1 ∈ B) = P(Xt+1 ∈ A,Xt ∈ B) ∀A,B.

Choosing for B the whole space Rp, it follows that a reversible dsitribution π is stationary.
If P (x, .) has the density p(x, y) for any x, then reversibility is equivalent to

π(x)p(x, y) = π(y)p(y, x) ∀x, y.

For any pair x 6= y, we can therefore choose one of the two values p(x, y) and p(y, x)
arbitrarily, whereas the other one is determined by the reversibility equation. However,
a solution obtained in this way does in general not satisfy

∫
p(x, y)dy = 1 for any x and

thus is not the density of a transition kernel. To solve this problem, one can start with an
arbitrary transition density q and then choose from the two possible solutions

p(x, y) = q(x, y), p(y, x) =
π(x)q(x, y)

π(y)

and

p(x, y) =
π(y)q(y, x)

π(x)
, p(y, x) = q(y, x)

the one which satisfies p(x, y) ≤ q(x, y) and p(y, x) ≤ q(y, x) for any x 6= y. This solution
can be written in the compact form

p(x, y) = q(x, y) min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
.



40 Bayesian computation

It folows that
∫
p(x, y)dy ≤

∫
q(x, y)dy = 1 for any x, and one can put the missing mass on

the diagonal, meaning that the chain does not move. Written in formulae, the transition
kernel is

P (x,A) =

∫
A
p(x, y)dy + 1A(x)

(
1−

∫
p(x, y)dy

)
.

Assuming that we can simulate from the transition density q(x, .) for any x, the following
algorithm generates a Markov chain with the transition kernel P :

• At time t generate Y t ∼ q(Xt−1, x)dx and U t ∼ uniform(0,1), independently from
each other and independently of previously generated variables.

• Set

Xt =

{
Y t if U t ≤ min

(
1, π(Y t)q(Y t,Xt−1)

π(Xt)q(Xt−1,Y t)

)
Xt−1 else

This is similar to the accept/reject method, but the proposal depends on the most recent
value, and in case of a rejection, we do not move. The simplest choice of q(x, .) is a normal
density with mean x and an arbitrary covariance matrix Σ. In this case, q(x, x′) = q(x′, x)
so that the acceptance probability is simply min(1, π(x′)/π(x)). This means moving to
value which is more likely than the current value is always accepted whereas the acceptance
of a move to a less likely value is given by the likelihood ratio. The algorithm for a
symmetric q is due to Metropolis et al. (1953) whereas the general case is due to Hastings
(1970).

One can also combine Metropolis-Hastings with Gibbs by proposing a move in only one
or a few components of x. The formula for accepting a move has the same structure as
before.

The Gibbs and Metropolis algorithms are very flexible and can in principle handle most
problems. However, judging how reliable the results are is not always easy. The situ-
ation differs from independent Monte Carlo in two aspects. First, because Xt is only
approximately distributed according to the target π, there is a bias:

E(H̄N,r) 6=
∫
h(x)π(x)dx.

Second, because successive values Xt are dependent, the variance is more complicated

Var
(
H̄N,r

)
=

1

(N − r)2

(
N∑

t=r+1

Var(h(Xt)) + 2
N∑

t=r+1

N−t∑
s=1

Cov(h(Xt), h(Xt+s))

)
.

The pragmatic way to deal with these complications is to look at the times series plots of
h(Xt) or of components Xt

i versus t and to choose r such that the series “looks stationary”
for t ≥ r. Then one assumes that Xt ∼ π for t > r so that there is no bias, Var(h(Xt)) is
independent of t and the covariances Cov(h(Xt), h(Xt+s)) depend only on s and can be
estimated by

1

N − r

N−s∑
t=r+1

(h(Xt)− H̄r,N )(h(Xt+s)− H̄N,r).

The number of replicates N should then be large enough that these estimated covariances
are close to zero for most lags s.
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4.4 Some advanced computational methods

4.4.1 Adaptive MCMC

We have seen in the previous section that usually there are many transition kernels which
have a given target π as the stationary distribution. The prime example is the Metropolis-
Hastings algorithm with proposal Y t ∼ N (Xt−1,Σ) where Σ is an arbitrary positive
definite covariance matrix. Although any choice of Σ leads to a consistent estimation of
the quantities of interest

∫
h(x)π(x)dx, the choice of Σ has a large influence on the quality

of the approximation for any finite number N of steps. In some prototype cases, it has
been shown that if π is a p-dimensional distribution with covariance matrix Covπ(X), then
the “optimal” choice of Σ is given by

Σ =
2.382

p
Covπ(X).

A similar result says that the “optimal” choice is such that the average acceptance rate –
after we have reached the stationary distribution – is 0.234, that is∫

π(x)

∫
q(x, y) min

(
1,
π(y)

π(x)

)
dydx = 0.234.

These criteria are considered as reasonable rules of thumb also in cases which differ from
the ones in which they have been derived. The problem is however that they cannot be
used directly because they depend on the unknown target π. A standard strategy is to
have first an exploration phase where one tries out various values of Σ. In a second phase
one then runs the algorithm with a fixed Σ determined from the experience gained in the
exploration phase.

Adaptive MCMC combines the two phases by using a time dependent Σt which depends
on the sequence of values (X0, X1, . . . , Xt−1) generated so far. For instance, in order to
approximate the first criterion mentioned above, one can take

Σt =
2.382

p

1

t− 1

t−1∑
s=0

(Xs − X̄t−1)(Xs − X̄t−1)T , X̄t−1 =
1

t

t−1∑
s=0

Xs.

For the second criterion, let us assume that we only want to optimise the scale of Σ where
the shape is fixed, e.g. Σ = σ2Ip. If we assume that the acceptance probability is a
decreasing function of σ2, then the following rule to choose σ2,t seems reasonable

σ2,t =

{
rtσ

2,t−1 if 1
t−1

∑t−2
s=0 min(1, π(Y s+1)

π(Xs) ) > 0.234,

1
rt
σ2,t−1 if 1

t−1

∑t−2
s=0 min(1, π(Y s+1)

π(Xs) ) < 0.234.

Here Y s is the proposed value in step s and rt ↓ 1.

The theoretical analysis of these and similar algorithms is delicate because one has to
control the probability that this algorithm results in choosing a sequence Σt where some
eigenvalues go to zero or to infinity. For more details, discussion and examples, see C.
Andrieu, J. Thoms, A tutorial on adaptive MCMC, Stat. Comput. (2008) 18, 343 - 373.
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4.4.2 Hamiltonian Monte Carlo

This is a method which allows the chain to make big moves that are still accepted with
high probability. The price to pay is that we have to be able to evaluate the gradient of
log π efficiently. The method is based on the observation that a deterministic transition
Xt = G(Xt−1) has π as stationary distribution if it is volume preserving and keeps π
invariant:

π(G(x)) = π(x),

∣∣∣∣det
∂G(x)

∂x

∣∣∣∣ = 1 ∀x.

This follows immediately from the transformation formula for densities. With this tran-
sition we cannot reach all possible sets A with π(A) > 0 and thus it does not satisfy our
second condition. Moreover, it seems difficult to find a map G with these two properties.
However, both problems can be avoided if we consider a new target distribution on a space
with doubled dimension:

π̃(x, u) ∝ π(x) exp

(
−

p∑
i=1

u2
i

2mi

)
.

Clearly, if (X,U) ∼ π̃, then X ∼ π and if morever U ′ ∼ N (0,diag(mi)) is independent
of (X,U), then also (X,U ′) ∼ π̃. Hence if we alternate between drawing an independent
new component u and applying a transformation G which is volume preserving and keeps
π̃ invariant, we obtain a Markov chain which satisfies both conditions. Moreover, both
transitions can make big moves in the (x, u) space and thus the chain converges quickly
to the stationary distribution and has autocorrelations which decay quickly.

The construction of the map which is volume preserving and keeps π̃ invariant is based
on Hamiltonian mechanics which led to the name “Hamiltonian Monte Carlo”. We define
the Hamiltonian

H(x, u) = − log π(x) +

p∑
i=1

u2
i

mi
.

In physical terms, x is the position, u is the momentum, − log π(x) is the potential and∑ u2i
mi

the kinetic energy. The transformation G(x, u) is then the solution at time T of the
ordinary differential equation

dxi
dt

=
∂H(x, u)

∂ui
,

dui
dt

= −∂H(x, u)

∂xi

with initial condition (x, u). The value of T and of the “masses” mi are parameters of the
method, to be chosen by the user. It is well known from basic mathematical physics (and
straightforward to verify) that

d

dt
H(x(t), u(t)) = 0, ∇

(
∂H(x, u)

∂u
,−∂H(x, u)

∂x

)
= 0.

The first equation shows that G leaves π̃ invariant and the second that G is volume
preserving. In addition, the inverse transformation G−1 is obtained by changing the sign
on the right hand side of the differential equation. By the form of the Hamiltonian,
it follows that G−1(x, u) = (G(x,−u)x,−G(x,−u)u), that is up to a reflection of the
momentum, the time evolution is reversible.

For implementation, we need to solve the above differential equation by some discretization
procedure. This unfortunately has the consequence that the transformation does not keep
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π̃ exactly invariant. The so-called “leap frog method” however induces only small changes
to π̃, it preserves volume exactly and it is time reversible (up to reflecting u). Thus it is
possible to restore the exact invariance of π̃ by a Metropolis-Hastings acceptance step at
the end.

In order to see the advantage of the Hamiltonian Monte Carlo, let us assume that at some
time t ui > 0, that is the i-th component of x moves to the right. If ∂(log π(x))/∂xi > 0
the i-th component moves into a region which is more likely under the target π, and by the
Hamiltonian dynamics the momentum ui increases and so we move faster. On the other
hand, if ∂(log π(x))/∂xi < 0 we are going into a less likely region and the momentum ui
decreases and eventually gets reversed.

For more details, see e.g. Chapter 5 in Handbook of Markov Chain Monte Carlo, S.
Brooks, A. Gelman, G.L. Jones and X.L. Meng (eds), Chapman and Hall, 2011.

4.4.3 Reversible jump MCMC

So far our target distribution π always was a distribution on Rp for some fixed dimension
p. In Bayesian model selection or nonparametric function estimation we are interested in a
model indicator k = 1, 2, . . . and a parameter vector θk ∈ Rpk . In nonparametric function
estimation, k is typically the number of basis elements in an expansion of the unknown
function with respect to a given basis. For instance, if we use splines k would be the
number of knots and θk would contain the location of the knots and the coefficients of the
function in the B-spline basis. Or if we use Gaussian mixtures to approximate arbitrary
densities, k is the number of components in the mixture and θk contains the means and
covariances of the k components. In such situations the posterior π(θk, k | x) is thus a
distribution on the space

X = ∪kRpk

where the union may be over a finite or a countable set. In the following we denote
elements of X by (xk, k) and we consider an arbitrary target distribution π on X which
need not be a posterior distribution coming from a Bayesian analysis.

The first idea is to use a separate MCMC algorithm on Rpk to draw from π(xk | k) ∝
π(xk, k) for each k. However, this does not give us information about the probabilities

π(k) =

∫
Rpk

π(xk, k)dxk

for the model indicator k, and it is computationally inefficient to spend a lot of effort
for those k where π(k) is small. Reversible jump MCMC draws directly from the full
distribution of both k and xk so that π(k) is approximated by the number of draws that
lie in Rpk . For this we need an algorithm which proposes also jumps from Rpk to some Rpm
for m 6= k in order to explore the whole state space. We want to use the basic Metropolis-
Hastings idea where we propose a value based on some arbitrary proposal distribution and
then use an accept/reject step to ensure that the target π is stationary. A closer analysis
shows that if the proposal allows jumping from Rpk to Rpm , then the reverse jump from
Rpm to Rpk must also be allowed and we must have the same degrees of freedom for the
pairs (xk, xm) and (xm, xk). More precisely, assume that from a given xk ∈ Rpk we propose

Xm = xm(xk, Umk), Umk ∈ Rdmk ∼ fmk(u)du

and from a given xm ∈ Rpm we propose

Xk = xk(xm, Ukm), Ukm ∈ Rdkm ∼ fkm(u)du.
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Then the dimensions must match in the sense that

pk + dmk = pm + dkm

and there must be a bijection between (xk, umk) and (xm, ukm). The acceptance proba-
bility contains then also the Jacobi determinant

| det

(
∂(xm, ukm)

∂(xk, umk)

)
|.

For more details, see e.g. Chapter 6 in Highly Structured Stochastic Systems, P.J. Green,
N.L. Hjort and S. Richardson (eds), Oxford University Press, 2003.

4.4.4 Sequential Monte Carlo

This is a name used for methods which sample not from one target π, but from a sequence
of related targets π0, π1, . . . πn. For instance, we can take as πk the posterior of θ given
the first k observations, or we can take

πk(x)dx ∝ π(x)φk , φ0 < φ1 < . . . φn = 1.

This means that π0 is close to a uniform distribution and we can for instance use ac-
cept/reject to generate a sample (X0,t) from π0. This sample is then sequentially modified
so that at the end we have a sample (Xn,t) from the original target π. In particular, if
π is multimodal, then this method is preferable over the Metropolis algorithm because it
has better chances to sample from regions around all modes.

The modification occurs by a propagation and a reweighting/resampling step. Propagation
means that at stage k we choose a transition density pk and generate

Y k,t ∼ pk(Xk−1,t, y)dy, independently for t = 1, 2, . . . N.

Then

Y k,t ∼
∫
πk−1(x)pk(x, y)dx · dy,

so in order to transform (Y k,t) into a sample from πk by importance sampling, we have to
use the weights

wk,t ∝ πk(Y
k,t)∫

πk−1(x)pk(x, Y k,t)dx
.

However, the integral in the denominator is in general not available analytically and thus
the method cannot be used. The key idea is to look at the pairs (Xk−1,t, Y k.t) whose
density is equal to πk−1(x)pk(x, y). We want to convert this distribution into one which
has πk(y) as the second marginal. But all such densities have the form πk(y)qk−1(y, x)
where qk−1 is an arbitrary transition density. Hence if we set

Xk,t = Y k,It , P(It = s) ∝ πk(Y
k,s)qk−1(Y k,s, Xk−1,s)

πk−1(Xk−1,t)pk(Xk−1,t, Y k,t)
,

(Xk,t) is a sample from πk.

If one is willing to use weighted samples at all stages, then we do not need a resampling
step: We would then simply update the weights wk,t

wk,t ∝ wk−1,t πk(Y
k,s)qk−1(Y k,s, Xk−1,s)

πk−1(Xk−1,t)pk(Xk−1,t, Y k,t)
.
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However, this sequential multiplication leads very quickly to unbalanced weights, and
adding the resampling step gives more reliable approximations: The ties which arise from
the resampling at step k disappear in the next propagation step. Resampling helps to
concentrate the computing effort in those region of the space where the densities πk have
their main mass.

For more details see e.g. P. Del Moral, A. Doucet and A. Jasra, Sequential Monte Carlo
Samplers, J. Royal Statist. Soc. B 68 (2006): 411-436.

4.4.5 Approximate Bayesian computation

For some models, evaluating the likelihood f(x | θ) is complicated or even impossible. In
such cases, neither the Gibbs sampler nor Metropolis Hastings can be used to simulate
from the posterior

π(θ | xobs) ∝ π(θ)f(xobs | θ).

But often, simulating a random variable X ∼ f(x | θ)dx is much easier and we can
therefore generate pairs (θt, Xt) ∼ π(θ)f(x | θ)dθdx. If X is discrete, we can use the
accept/reject method to simulate from the density proportional to

π(θ)f(x | θ)1[x=xobs]

whose marginal is the posterior: We simply accept only pairs (θt, Xt) such that Xt = xobs.
Of course, it might take a very long time until we accept any pair at all, and in most cases
X is continuous anyhow. But we can use the same idea if we replace the point mass at
xobs by a distribution which is concentrated near xobs

π(θ)f(x | θ) exp(−d(x, xobs)/ε)

where d is a metric on the space of observations. Instead of working with a fixed ε, one
can also choose a sequence εn → 0 with a rather large ε0 and use a sequential Monte Carlo
algorithm to produce samples of the corresponding targets.

For more details see e.g. M. Marin, P. Pudlo, C.P. Robert, and R.J. Ryder, Approximate
Bayesian computational methods, Statistics and Computing, 22 (2012): 1167 - 1180.


