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This script gives a brief introduction into theory and methods of time series analysis.
For examples and illustrations of the concepts and methods, you should look at the R-
demonstrations which are also on my web page.
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1 Introduction

A time series is a sequence of observations of a system/phenomenon which varies irregularly
in time. We interprete the irregular behavior as the effect of randomness. Observations at
a fixed time point can be univariate or multivariate. The time points where observations
are made can be equispaced or irregular (equispaced observations with missing values gives
an intermediate situation).

The basic plot shows the observations versus time. From this plot one can usually obtain
a first descriptive characterization of a time series. Things to look for are for instance
whether the level is constant or changes slowly and thus exhibits a trend. In the case of a
trend, one then looks if the fluctuations change with the level or remain constant. Another
feature to look for is whether periodic behavior is present or absent. Periodic behavior
can either have a simple explanation as a seasonal effect with known period (day, week,
year), or it can be due to the internal dynamics of the system. In that case the period is
typically not known a priori and both period and cyclic pattern change over time. Finally,
one will look whether the behavior of the series in different time windows is essentially the
same or changing with time, either by slow or by sudden changes.

Goals of time series analysis can be classified in one of the following

• Description

• Modeling

• Prediction

• Signal extraction.

1.1 Stochastic processes

A stochastic process is a mathematical model for a time series.

Stochastic process = Collection of random variables (Xt(ω); t ∈ T ). Alternative view:
Stochastic process as a random function from T to R.

A basic distinction is between continuous and discrete equispaced time T . Models in
continuous time are prefered for irregular observation points. In this course we will restrict
ourselves mostly to discrete equispaced time.

In all interesting cases, there is dependence between the random variables at different
times. Hence need to consider joint distributions, not only marginals. Gaussian stochastic
processes have joint Gaussian distribution for any number of time points.

A stochastic process describes how different time series (when different ω’s are drawn)
could look like. In most cases, we observe only one realization xt(ω) of the stochastic
process (a single ω). Hence it is clear that we need additional assumptions, if we want
to draw conclusions about the joint distributions (which involves many ω’s) from a single
realization. The most common such assumption is stationarity.

Stationarity means the same behavior of the observed time series in different time windows.
Mathematically, it is formulated as invariance of (joint) distributions when time is shifted.
Stationarity justifies taking of averages (mathematically, one needs ergodicity in addition).

Simple examples of stochastic processes in discrete time:
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• White noise: Xt(.) i.i.d.. This model is stationary. It is not of interest by itself, but
useful as building block for more complicated models. The reason for the name will
become clear later.

• Harmonic oscillations plus white noise

Xt(ω) =
K∑
k=1

αk cos(λkt+ φk) + εt(ω)

where the εt(.) are i.i.d. and the αk, λk and φk are (unknown) parameters. The
“signal” is periodic iff λk/λj ∈ Q for all j, k. This model is not stationary.

• Moving averages:
Xt(ω) = F (εt(ω), εt−1(ω), . . . , εt−k(ω))

where the εt(.) are i.i.d. and F is a fixed function. This model is stationary. The
special case where F is linear is often used.

• Autoregressive models: These models are defined recursively:

Xt(ω) = F (Xt−1(ω)) + εt(ω)

where the εt(.) are i.i.d. and F is a fixed function. In order to define a model, we
also need an initial condition Xt0(ω) which is usually assumed to be independent
of all εt(.) for t > t0. This model is usually not stationary, but depending on f it
can converge to a stationary model as t → ∞ or t0 → −∞. Again, the linear case
F (x) = β0 + β1x is often used. In this case, the model is asymptotically stationary
iff |β1| < 1.

• Autoregressive conditionally heteroscedastic models

Xt(ω) = F (Xt−1(ω))εt(ω)

where the εt(.) are i.i.d. and F is a fixed function. The same comments as in the
autoregressive model apply.

The last two examples are special cases of a Markov process.

Deterministic chaotic models also show a behavior which is difficult to predict. They have
been considered as an alternative model class.

Among the processes in continuous time, we only mention Gaussian processes. These
are processes where all finite dimensional distributions are Gaussian. These processes
are determined by the mean function µ(t) and the covariance function C(t, s). Whereas
the mean function is arbitrary, not every function of two arguments is a valid covariance
function because the matrix (C(ti, tj); 1 ≤ i, j ≤ n) must be positive definite for all n and
all times t1, . . . , tn. We will come back to this in Section 2.1.

1.2 Treatment of trend and seasonal component

Series with trends and/or seasonal component have a mean value which changes with time
and thus they are not stationary. Hence one would like to be able to eliminate them so
that the remaining irregular part can be modeled hopefully by a stationary process.

4



A seasonal component is periodic with a period which is is fixed and known in advance.
We denote the number of observations in a full period by M . It is either strictly periodic
or it changes very slowly in time. Time series may contain other periodic features whose
period and shape are more variable and not due to a known periodic external influence
like the motion of the sun or the organisation of our society in working days and weekends.
In that case, the time series often can still be considered to be stationary and we should
not speak about seasonality.

Transformation of variables: Transform Xt → Yt = h(Xt) s. th. there is an additive
decomposition

Yt = Tt + St + It

into trend, seasonal component and irregular component. This means in particular that
the amplitude of the seasonal cycle remains constant in time. Ideally, It is (approximately)
stationary. The most common transformations h are from the Box-Cox family

h(x) =
xλ − 1

λ
(λ 6= 0), = log(x) (λ = 0).

Parametric models for trend and seasonal:

Yt =
K∑
k=0

αkt
k +

J∑
j=1

(βj cos(2π
jt

M
) + γj sin(2π

jt

M
)) + It.

where M is the number of time points in one cycle and J ≤M/2. Estimate the parameters
by least squares. Usually this is not flexible enough (e.g. the seasonal component is
assumed to be constant over time).

Nonparametric decompositions: We can estimate the trend by the moving averages:

T̂t =
1

M
(
1

2
Yt−M/2 + Yt−M/2+1 + · · ·+ 1

2
Yt+M/2).

The seasonal component can then be estimated from Rt = Xt − T̂t:

Ŝt =
1

2k + 1
(Rt−kM +Rt−(k−1)M + · · ·+Rt+kM )

The function stl in R provides a more sophisticated version of this basic idea.

Differencing: Since Tt changes slowly, Tt ≈ Tt−1. Hence the differenced series ∆Yt =
Yt − Yt−1 is approximately trend free. Similarly, St−M ≈ St, i.e. seasonal differences
∆MYt = Yt−Yt−M is approximately free of the seasonal component. In order to eliminate
both, we can consider

∆M (∆Y )t = ∆(∆YM )Yt = Yt − Yt−1 − (Yt−M − Yt−M−1).
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2 The autocovariance function

If (Xt) is a stationary process whose first and second moments exist, then E(Xt) is inde-
pendent of t, E(Xt) = µ and Cov(Xt, Xs) depends only on t− s:

Cov(Xt, Xs) = C(t− s).

C is called the autocovariance function of the process. C(0) is the variance of Xt and thus

ρ(u) =
C(u)

C(0)

is the autocorrelation function. Because

C(−h) = Cov(Xt−h, Xt) = Cov(Xt, Xt+h) = Cov(Xt+h, Xt) = C(h),

the autocovariance and the autocorrelation are symmetric.

Example: White noise If (Xt) is i.i.d., C(h) = 0 for all h 6= 0.

Example: Moving averages. If

Xt =

K∑
k=0

αkεt−k

with (εt) i.i.d., then

E(Xt) = E(εt)

K∑
k=1

αk

and

C(h) = Var(εt)
K∑
k=h

αkαk−h (0 ≤ h ≤ K), C(h) = 0 (h > K).

This result can be extended to two-sided infinite moving averages

Xt =
∞∑

k=−∞
αkεt−k

with
∑

k |αk| <∞. It still holds

E(Xt) = E(εt)
∞∑

k=−∞
αk, C(h) = Var(εt)

∞∑
k=−∞

αkαk−h.

(One has to address the issues of convergence and the exchange of expectation and limits,
this can be done).

A process with E(Xt) = µ and Cov(Xt, Xs) = C(t−s) for all t, s is called weakly stationary.
For Gaussian processes, stationarity and weak stationarity are equivalent, but for other
processes the two concepts differ.

Example: Autoregression Iterating the equation Xt = φXt−1 + εt gives

Xt = φtX0 +

t−1∑
j=0

φjεt−j .
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Taking expectations gives

E(Xt) = φtE(X0) +
t−1∑
j=0

φjE(εt).

Hence, if |φ| < 1, E(Xt)→ E(εt)/(1− φ). If moreover X0, ε1, ε2, . . . are all independent,
we obtain for h ≥ 0 and t→∞

Cov(Xt+h, Xt)→ Var (ε1)
∞∑
j=0

φjφh+j =
Var (ε1)

1− φ2
φh.

In particular, we have shown that the process is asymptotically weakly stationary if |φ| < 1.

ARCH processes The strategy to iterate the recursion does not generalize beyond linear
autoregressions. Because of this, there are in general no simple formulae for nonlinear
autoregressions. But for ARCH processes Xt = F (Xt−1)εt with E(εt) = 0, we can show
that the autocorrelations are zero. Note that by definition, Xt depends only on X0 and
ε1, . . . , εt. Because we assume that the random variables εt are i.i.d. and independent of
X0, it follows that εt is independent of Xs for s < t. Therefore

E(Xt) = E(F (Xt−1)εt) = E(F (Xt−1))E(εt) = 0

and for h > 0

Cov(Xt+h, Xt) = E(Xt+hXt) = E(εt+hF (Xt+h−1)Xt) = E(εt+h)E(F (Xt+h−1)Xt) = 0.

Although Xt+h and Xt are uncorrelated, they are dependent: One can verify for instance
that |Xt+h| and |Xt| are correlated, and so are X2

t+h and X2
t .

The standard estimators of mean, autocovariance and autocorrelation are

µ̂ = X̄n =
1

n

n∑
t=1

Xt

Ĉ(h) =
1

n

n−|h|∑
t=1

(Xt − X̄n)(Xt+h − X̄n)

and

ρ̂(h) =
Ĉ(h)

Ĉ(0)
.

The reason why the denominator in Ĉ(h) is n and not n− |h| will be discussed below. If
the time series plot does not show clear evidence against stationarity, one usually looks
next at a plot of ρ̂(h) against h in order to obtain information about linear dependence in
the series.

2.1 Linear prediction and partial autocorrelations

The best linear prediction of Xt based on (Xr, Xr+1, . . . Xs) for r ≤ s < t or t < r ≤ sis
the linear combination

X̂t|r:s = α+
s−r∑
k=0

βkXs−k
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which minimzes the mean square error of prediction:

E((Xt − X̂t|r:s)
2).

X̂t|r:s is determined by a system of linear equations which involve the mean and autoco-
variance of Xt only:

E(Xt − X̂t|r:s) = 0

E((Xt − X̂t|r:s)Xu) = 0 (r ≤ u ≤ s)

Example: Let r = s = t− 1. One easily verifies that

X̂t|t−1 = µ+ ρ(1)(Xt−1 − µ), E((Xt − X̂t|t−1)2) = C(0)(1− ρ(1)2).

The Durbin-Levinson algorithm allows to compute the coefficients of the linear predictions

X̂p|0:p−1 = α(p) +

p∑
k=1

β
(p)
k Xp−k

and the mean square errors σ2
p = E((Xp−X̂p|0:p−1)2) recursively. We start with σ2

0 = C(0)
and α0 = µ. Then we have

β
(p)
k = β

(p−1)
k + τ(p)β

(p−1)
p−k (1 ≤ k < p),

β(p)
p = τ(p),

α(p) = µ(1−
p∑

k=1

β
(p)
k ),

σ2
p = σ2

p−1(1− τ(p)2)

where

τ(p) =
C(p)−

∑p−1
k=1 β

(p−1)
k C(p− k)

σ2
p−1

where τ(p) is the so-called partial autocorrelation of lag p. According to the above formula,
τp is the coefficient of X0 in X̂p|0:p−1, and 1−τ2

p gives the reduction in mean square error if
one more observation from the past becomes available. For a derivation of these formulae,
see for instance Brockwell and Davies, Chapter 5.2.

Example: For an autoregression we have C(h) = C(0)φ|h| and therefore

τ(2) =
C(2)− φ · C(1)

σ2
1

= 0.

This means that if we know Xt−1, then there is no additional information in Xt−2 that
can be used for predicting Xt. This holds because Xt = φXt−1 + εt and εt is independent
of all past values.

If we allow arbitrary (non-linear) functions of (Xr, Xr+1, . . . Xs), we obtain the condi-
tional mean as the best prediction. To compute it, we need the joint distribution of
(Xr, Xr+1, . . . Xs, Xt), not only the first and second moment. For Gaussian processes, the
best linear and the best prediction coincide.
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2.2 Regression with correlated errors

The autocovariance function is needed for the variance of the arithmetic mean, or more
generally for the variance of least squares estimators with time series errors.

Variance of the arithmetic mean:

Lemma 1. Let (Xt) be stationary with autocovariance C. Then it holds

a)

Var

(
1

n

n∑
t=1

Xt

)
=

1

n

n−1∑
k=−n+1

(1− |k|
n

)C(k).

b) If
∑∞

k=1 |C(k)| <∞, then as n→∞

nVar

(
1

n

n∑
t=1

Xt

)
→ σ2

∞ =
∞∑

k=−∞
C(k) = Var (Xt) (1 + 2

∞∑
k=1

ρ(k)).

Proof. The first claim follows from

Var

(
n∑
t=1

Xt

)
=

n∑
t=1

n∑
s=1

C(t− s)

=

n−1∑
k=−n+1

C(k) · (Number of pairs with t− s = k)︸ ︷︷ ︸
(=n−|k|)

For the second claim, we write

n−1∑
k=−n+1

(1− |k|
N

)C(k) =
∞∑

k=−∞
max(0, 1− |k|

n
)C(k)︸ ︷︷ ︸

→C(k) for n→∞

The claim thus follows by dominated convergence (Lebesgue’s Theorem).

Hence dependence typically inflates the standard deviation of the arithmetic mean by a
constant. In order to estimate this standard deviation, we have to estimate the sum of
the autocovariances. It will become clear later how this can be done.

In models of long range dependence, the autocorrelations decay like a constant times
|h|2d−1 with 0 < d < 1

2 , and thus the condition
∑∞

k=1 |C(k)| <∞ does not hold. One can
show that in such a situation, the variance of the arithmetic mean decays like n2d−1 times
another constant, that is more slowly than under independence.

Regression model:

Yt =

p∑
k=1

βkxt,k + εt (t = 1, . . . , n)

where εt is stationary with autocovariance C. The covariance of the ordinary least squares
estimator is in matrix form

(XTX)−1(XTΣnX)(XTX)−1
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where Σn is the n × n matrix with elements C(i − j). Like in the case of the mean,
the correlation of the errors changes the covariance of the estimated coefficients – often
substantially. In order to detect correlations of the errors, the Durbin-Watson test can be
used. It is based on the test statistic

T =

∑n−1
i=1 (ri+1 − ri)2∑n

i=1 r
2
i

≈ 2

(
1−

∑n−1
i=1 riri+1∑n
i=1 r

2
i

)
.

In order to take the correlations of the errors into account for the estimated standard
errors, the standard procedure is to assume a parametric model (e.g. an ARMA-model,
to be introduced below) for the autocovariance function of the errors εt and to estimate
these parameters from the residuals.

The generalized least squares estimator is the best linear unbiased estimator of the coef-
ficients βk. It is the maximum likeleihood estimator of β and it is given by

β̂ = (XTΣ−1
n X)−1XTΣ−1

n y,

and has covariance (XTΣ−1
n X)−1. Again, one can use a parametric model for Σn and then

estimate β and the parameters in Σn by (joint) maximum likelihood.

2.3 Properties of estimated ACF

The variance of the estimated autocovariances depends on the fourth moments of the
process and are very complicated. It turns out that in the case of a moving average, the
asymptotic variance of the estimated autocorrelations depends only on the autocorrelations

Theorem 1. If Xt =
∑

k akεt−k where the εt are i.i.d. with E(ε2
t ) < ∞,

∑
k |ak| <

∞ and
∑

k a
2
k|k| < ∞, then for n → ∞ the standardized sequence

√
n(ρ̂(h) − ρ(h)) is

asymptotically normal with mean zero and covariances

∞∑
j=1

(ρ(j + h) + ρ(j − h)− 2ρ(j)ρ(h))(ρ(j + k) + ρ(j − k)− 2ρ(j)ρ(k)).

We omit the proof (see Brockwell and Davies, Chapter 7.3)

In general, the asymptotic variance of ρ̂(h) is thus complicated and depends on the un-
known autocorrelations for all lags. Some simplification occurs in special cases: If Xt

is white noise, then the estimated autocorrelations are asymptotically independent and
N (0, 1/n)-distributed. For a moving average process Xt =

∑K
k=0 αkεt−k, the asymptotic

variance of ρ̂(h) is for |h| > K equal to (1+2ρ(1)2+. . .+2ρ(K)2)/n. Because the estimates
are dependent for different lags, the interpretation of the sample autocorrelation function
is not straightforward.

2.4 Herglotz’s theorem: The spectrum

The autocovariance function of any stationary process has the property that the matrix
Σn with elements C(i− j) for 1 ≤ i, j ≤ n is positive definite for any n:

n∑
t=1

n∑
s=1

C(t− s)atas = Var

(
n∑
t=1

atXt

)
≥ 0
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for any a1, . . . , an. Such a function is called positive definite. The converse is also true:
Any positive definite function is the autocovariance of some stationary process.

The reason for the denominator n in the definition of the estimated autocovariance Ĉ(h)
is that with this choice Ĉ is guaranteed to be positive definite: If we set Xu = X̄ for
u > n, then for 1 ≤ t, s ≤ n

Ĉ(t− s) =
1

n

n−1∑
u=0

(Xu+t − X̄)(Xu+s − X̄).

This implies (by exchanging the order of summation)

n∑
t=1

n∑
s=1

Ĉ(t− s)atas =
1

n

n−1∑
u=0

(
n∑
t=1

at(Xu+t − X̄)

)2

≥ 0.

With the denominator n − |h|, this is not true in general: Consider for instance the case
of three observations X1 = 1, X2 = 0, X3 = −1.

It is in general difficult to decide whether a function is positive definite. The Theorem of
Herglotz gives a characterization in terms of the Fourier transform:

Theorem 2. A function C : Z→ R with C(h) = C(−h) is positive definite iff there exists
a finite, symmetric measure S on [−1

2 ,
1
2 ] such that

C(h) =

∫ 1/2

−1/2
exp(2πihλ)S(dλ) =

∫ 1/2

−1/2
cos(2πhλ)S(dλ).

If
∑
|C(k)| <∞, then S has the density

s(λ) =
∞∑

h=−∞
C(h) exp(−2πihλ) =

∞∑
h=−∞

C(h) cos(2πhλ),

that is

C(h) =

∫ 1/2

−1/2
exp(2πihλ)s(λ)dλ =

∫ 1/2

−1/2
cos(2πhλ)s(λ)dλ.

S is called the spectral measure, and s the spectral density. Note that s(0) is the asymp-
totic variance of the mean (for summable covariances).

Proof. The “if” part is easy:

n∑
t=1

n∑
s=1

C(t−s)atas =

∫ n∑
t=1

n∑
s=1

exp(2πi(t−s)λ)atasS(dλ) =

∫ ∣∣∣∣∣
n∑
t=1

exp(2πitλ)at

∣∣∣∣∣
2

S(dλ) ≥ 0.

For the “only if” part, we start with

0 ≤
n∑
t=1

n∑
s=1

C(t− s) exp(−2πi(t− s)λ) =

n−1∑
h=−n+1

(n− |h|)C(h) exp(−2πihλ)

If
∑
|C(h)| <∞, we can divide by n and let n go to infinity to obtain

s(λ) =
∞∑

h=−∞
C(h) exp(−2πihλ) ≥ 0.
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Finally, multiplying both sides by exp(2πikλ) and integrating over λ gives

C(k) =

∫ 1/2

−1/2
exp(2πikλ)s(λ)dλ.

For the general case, we have to look at the spectral distribution function:

Sn(λ) =

∫ λ

−1/2

n−1∑
h=−n+1

(1− |h|/n)C(h) exp(−2πihν)dν

is monotonically increasing and Sn(1
2) = C(0). By compactness of the space of distribu-

tions on [−1/2, 1/2] (Prohorov’s Theorem), one then obtains convergence of Sn.

Examples:

• White noise: We find easily
s(λ) ≡ Var(Xt).

Since white light has a flat spectrum, this explains the name “white noise”.

• Moving average: We have seen before that C(h) =
∑

k αkαk−h. Hence we have

C(h) exp(−2πihλ) =
∑
k

αk exp(−2πikλ)αk−h exp(2πi(k − h)λ).

By a change of summation we obtain therefore

s(λ) =
∞∑

h=−∞
C(h) exp(−2πihλ) =

∣∣∣∣∣∑
k

αk exp(−2πikλ)

∣∣∣∣∣
2

• Autoregressive process. Because C(h) = φ|h|C(0), we obtain

s(λ) = C(0)

( ∞∑
h=0

(φh exp(−2πihλ) + φh exp(2πihλ))− 1

)

= C(0)

(
1

1− φ exp(−2πiλ)
+

1

1− φ exp(2πiλ)
− 1

)
=

C(0)(1− φ2)

|1− φ exp(2πiλ)|2
.

• Random harmonic oscillations. Consider the process

Xt(ω) =

J∑
j=1

(Aj(ω) cos(2πλjt) +Bj(ω) sin(2πλjt))

where the Aj and Bj are independent with means zero and variances σ2
j and the λj

are deterministic. This process has mean zero and

Cov(Xt+h, Xt) =
∑
j

σ2
j (cos(2πλj(t+ h)) cos(2πλjt) + sin(2πλj(t+ h)) sin(2πλjt))

=
∑
j

σ2
j cos(2πλjh)

by the well known formula for cos(x − y). Hence it is weakly stationary, and the
spectrum is the sum of point masses at ±λj with weights σ2

j /2.
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In the last example, the process was a superposition of harmonics, and the spectrum
encodes the information about frequencies present and variances of the amplitudes. The
example is however not very useful for applications because for each realization of Xt(ω)
the amplitudes Aj and Bj are fixed and thus we cannot obtain information about the
average size σj of the amplitude. Later, we will see that all stationary processes can
be decomposed in (infinitely many) harmonics whose amplitudes are determined by the
spectrum. Moreover, we typically can recover the spectrum from a single long realization.

The argument above for the moving average can be generalized.

Lemma 2. If (Xt) is a weakly stationary process with autocovariance CX and spectrum
SX and if (αk) are coefficients with

∑
k |αk| <∞, then the process

Yt =
∑
k

αkXt−k

is also weakly stationary with

CY (h) =
∑
j

CX(j)
∑
k

αkαj+k−h

and

SY (dλ) =

∣∣∣∣∣∑
k

αk exp(−2πikλ)

∣∣∣∣∣
2

SX(dλ).

Proof.

CY (h) = Cov(
∑
k

αkXt+h−k,
∑
`

α`Xt−`) =
∑
k,`

αkα`CX(h+ `− k) =
∑
k,j

αkαk+j−hCX(j).

Because |CX(j)| < CX(0) for all j, the double sum on the right hand side converges. This
also shows that

Var(
∑
|k|>n

αkXt−k)→ 0 (n→∞),

that is
∑

k αkXt+h−k converges in L2 and thus we can indeed exchange covariance and
sum above.

Finally, by the spectral representation of CX(j)

CY (h) =

∫ ∑
k,`

αkα` exp(2πi(h+`−k)λ)SX(dλ) =

∫
exp(2πihλ)

∣∣∣∣∣∑
k

αk exp(−2πikλ)

∣∣∣∣∣
2

SX(dλ).

This allows a different derivation of the spectrum of an autoregression: Because Xt −
φXt−1 = εt and because εt is white noise, we conclude

Sε(dλ) = |1− φ exp(−2πiλ)|2 SX(dλ) = Cε(0)dλ.

13



3 ARMA models

3.1 Definition of ARMA models: Causality, stationarity, invertibility

3.1.1 Linear difference equations

We collect here some results about the solutions of homogeneous difference equations that
will be useful in the following. Hence for given (real) coefficients φ1, . . . φp with φp 6= 0 we
consider complex valued sequences (ut)t∈Z which satisfy

ut = φ1ut−1 + φ2ut−2 + . . .+ φput−p (t ∈ Z).

Theorem 3. The set of sequences (ut) that satisfy the above difference equation is a vector
space of dimension p. A basis is given by the sequences of the form

ut = tjλt

where λ−1 is a root of the polynomial

Φ(z) = 1− φ1z − . . . φpzp

with multiplicity M and 0 ≤ j < m.

Proof. It is clear that a linear combination of two solutions is again a solution. Moreover,
if p consecutive values uk+1, . . . , uk+p of a solution (ut) are given, then the solution is
unique: Values ut for t > k + p follow by forward iteration, those for t ≤ k follow by
backward iteration

ut−p =
ut − φ1ut−1 − . . .− φp−1ut−p+1

φp
.

Therefore the dimension of the vector space is p.

Next, we show that the above sequences are indeed solutions. First we take j = 0:

λt − φ1λ
t−1 − . . . φpλt−p = λtΦ(λ−1) ≡ 0.

Similarly, for j = 1 we have

tλt − φ1(t− 1)λt−1 − . . . φp(t− p)λt−p = λttΦ(λ−1)− λt−1Φ′(λ−1) ≡ 0.

The general case follows because

Φ(j)(λ−1) = −λj
p∑
k=j

φkk(k − 1) · · · (k − j + 1)λ−k = 0 (j < m)

implies that also
p∑

k=1

φkk
jλ−k = 0 (j < m).

The proof will be completed if we can show that the above solutions are linearly indepen-
dent since the number of zeroes of a polynomial of degree p counted with their multiplicity
is equal to p. For a proof of the linear independence, we refer to Brockwell and Davies,
Theorem 3.6.2.
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Often we are interested in real valued solutions. These can be obtained easily because
complex valued solution of real polynomials occur in conjugate pairs: Hence if r exp(iν)
is a zero of Φ(z), then so is r exp(−iν). By the vector space property

tjr−t
exp(iνt) + exp(−iνt)

2
= tjr−t cos(νt)

and

tjr−t
exp(iνt)− exp(−iνt)

2i
= tjr−t sin(νt)

are also solutions, and one can easily show that they are linearly independent.

The above theorem shows that all solutions have the property ut → 0 as t→∞ iff |z| > 1
for all zeroes of Φ(z). In this case, all solutions decay exponentially to zero. If we require
only that the solutions remain bounded as t → ∞, we can allow zeroes with multiplicity
1 on |z| = 1.

All the results here remain valid if we consider sequences (ut)t≥t0 which satisfy the recur-
sion for all t ≥ t0 + p .

3.1.2 Causal and stationary autoregressions

A stochastic process (Xt)t∈Z is called a Markovian autoregressive process of order p if

Xt = φ1Xt−1 + . . .+ φpXt−p + εt

where εt is independent of all Xs, s < t. The variable εt is called the innovation at time t.

For a Markovian autoregression, φ1Xt−1 + . . . + φpXt−p + E(εt) is the best prediction of
Xt from the past. Furthermore, the innovations at different times are independent: For
t > s εt is independent of Xs − φ1Xs−1 − . . .− φpXs−p = εs.

When is a Markovian autoregression stationary ? First it is clear that under stationarity,
the innovations are not only independent, but also identically distributed. For an AR(1)-
process, we obtain by iteration

Xt =

t−1∑
j=0

φjεt−j + φtX0.

Hence if second moments exist and if (Xt) is stationary, then

C(0) = Var(ε)
t−1∑
j=0

φ2j + φ2tC(0)

since by assumption all terms on the right are independent. Clearly this implies that
|φ| < 1. The general case is covered by the next Theorem.

Theorem 4. A stationary Markovian autoregression with finite second moments exists iff
all zeroes of the polynomial

Φ(z) = 1− φ1z − . . .− φpzp
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are outside the unit circle {z; |z| ≤ 1}. In that case the process has the representation

Xt =
∞∑
j=0

ψjεt−j ,

where the coefficients ψj are the solution of the recursion

ψj = φ1ψj−1 + . . .+ φpψj−p (j ≥ 1)

with initial conditions ψ0 = 1, ψ−1 = . . . ψ1−p = 0 and thus converge to zero exponentially
fast. Moreover, if we define for t > 0

X∗t = φ1X
∗
t−1 + . . . φpX

∗
t−p + εt

with arbitrary initial conditions X∗0 , X
∗
−1, . . . , X

∗
1−p, Xt−X∗t → 0 almost surely and in L1.

Proof. We write the autoregression of order p as a vector autoregression of order 1: If we
set Zt = (Xt, Xt−1, . . . , Xt−p+1)T , ηt = (εt, 0, . . . , 0)T and

Φ =


φ1 . . . φp−1 φp

0

Ip−1
...
0


(with Ip−1 the identity matrix in dimension p− 1), then

Zt = ΦZt−1 + ηt.

Iterating this autoregression, we obtain

Zt =

t−1∑
j=0

Φjηt−j + ΦtZ0.

If Zt is stationary with finite variance, then Φt must converge to zero, and this is known
to be equivalent to the condition that all eigenvalues of Φ are smaller than one in absolute
value. The characteristic polynomial of Φ is however nothing else than the polynomial
zpΦ(1/z) = zp − φ1z

p−1 − . . .− φp.

Taking the limit in the above recursion, we obtain

Zt =

∞∑
j=0

Φjηt−j

Because of the way Φ is defined, the first column of Φt, say c(t), satisfies the recursion

c(t) = ((φ1, . . . , φp)
T c(t−1), c

(t−1)
1 , . . . , c

(t−1)
p−1 ).

This implies the recursion for ψt.

16



This Theorem shows that a stationary Markovian autoregression can be written as a linear
combination of past innovations. A process with such a representation is called causal. It
is clear that a causal autoregression with independent εt is Markovian.

Without the Markovian (or the causal) assumption, the Theorem is false. To see why,
take any |φ| > 1 and set

Xt = −
∞∑
j=1

φ−jεt+j .

Clearly this is stationary if the εt are i.i.d. Moreover,

φXt−1 = −εt +Xt,

so the recursion is satisfied. However, εt contributes to the sum defining Xs for s < t, and
thus the two variables are dependent.

Example: AR(2). The roots of Φ(z) = 1− φ1z − φ2z
2 are

z1,2 = −φ1 ±
√
φ2

1 + 4φ2

2φ2

One can verify that z1 and z2 are both outside the unit circle iff

−1 < φ2 < 1, φ2 < 1− |φ1|

Hence the set of parameters which correspond to a stationary Markovian autoregression
is a triangle. The roots are complex for φ2 < −1

4φ
2
1.

3.1.3 Invertible moving averages

A linear moving average of order q

Xt = εt + θ1εt−1 + . . . θqεt−q

with εt i.i.d. is always stationary. Moreover εt is always independent of Xs for s < t.
However we cannot call εt the innovation of the process unless the other terms θ1εt−1 +
. . . θqεt−q on the right hand side can be expressed with the values Xs for s < t.

We therefore call a moving average invertible if there are coefficients (πj) with
∑
|πj | <∞

such that

εt =
∞∑
j=0

πjXt−j .

(An autoregression is always invertible, just set π0 = 1, πj = −φj for 1 ≤ j ≤ p and πj = 0
for j > p).

Theorem 5. A moving average is invertible iff all zeroes of the polynomial

Θ(z) = 1 + θ1z + . . .+ θqz
q

are outside the unit circle {z; |z| ≤ 1}. In that case the coefficients πj are the solution of
the recursion

πj = −θ1πj−1 − . . .− θqπj−q
with initial conditions π0 = 1, π−1 = . . . π1−q = 0 and thus converge to zero exponentially
fast.

Proof. For q = 1, we simply iterate the equation Xt = εt + θεt−1. For q > 1, we write the
process as a vector moving average of order 1.
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3.1.4 ARMA-Processes

An autoregressive moving average process of order (p, q) (ARMA(p, q)) combines the prop-
erties of the two previous models. The recursion is

Xt =

p∑
j=1

φjXt−j +

q∑
j=1

θjεt−j + εt.

For a reasonable model εt should again be independent of Xs for s < t and εt should
depend only on past values Xs, s ≤ t, i.e. the model should be invertible

εt =
∞∑
j=0

πjXt−j .

Again it then follows that the variables εt are independent for different times t, and if
(Xt) is stationary, the εt are even i.i.d. Causality is defined as in the autoregressive case:
There are summable coefficients ψj such that

Xt =

∞∑
j=0

ψjεt−j .

For a causal ARMA model with (εt) i.i.d., εt is obviously independent of Xs for s < t.

If one wants to generalize the arguments for the autoregressive case one sees that a problem
occurs: For instance for any φ

Xt = φXt−1 + εt − φεt−1

has the stationay solution Xt = εt which is also invertible and εt is independent of Xs for
s < t. The reason for this problem is that Φ and Θ have common zeroes.

If we assume that Φ and Θ have no common zeroes, then the conditions that all zeroes of
Φ and Θ are outside of the unit circle are again necessary and sufficient for the existence
of a stationary ARMA model which is invertible and causal.

For a more compact notation, I introduce now the backshift operator B which acts on
infinite sequences (BX)t = Xt−1. The recursion of the ARMA process can then be written
as

Φ(B)Xt = Θ(B)εt.

Formally, we thus can write

Xt = Φ(B)−1Θ(B)εt, εt = Θ(B)−1Φ(B)Xt.

If Φ(z) has no zeroes in {z; |z| ≤ 1}, the Taylor series

Θ(z)

Φ(z)
=

∞∑
j=0

ψjz
j

converges on {z; |z| ≤ 1} and thus we can define

Φ(B)−1Θ(B) =
∞∑
j=1

ψjB
j .
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From the equality

Θ(z) = Φ(z) ·
∞∑
j=0

ψjz
j ,

we obtain by comparing the coefficient of zj on both sides the equations

ψj −
min(p,j)∑
k=1

φkψj−k = θj (0 ≤ j ≤ q), = 0 (j > q)

(we set θ0 = 1). This is the most convenient way to compute ψj numerically. In particular,
ψj again satisfies a difference equation except for an initial part of length q.

A similar argument applies for the coefficients in the invertibility representation

εt = Θ(B)−1Φ(B)Xt.

3.2 Properties

Let (Xt) be a stationary, causal and invertible ARMA(p, q) process. Then by the linearity
of the expectation we obtain

E(Xt) = E(εt)
Θ(1)

Φ(1)
.

Hence the mean centered processes also satisfy the ARMA recursion.

We next compute the autocovariance C(h) of the process. Because the covariance is linear
in both arguments, we obtain for h ≥ 0

C(h) = Cov(Xh, X0) =

p∑
j=1

φj Cov(Xh−j , X0) +

q∑
k=0

θk Cov(εh−k, X0)

=

p∑
j=1

φjC(h− j) +

q∑
k=h

θk Cov(εh−k, X0).

In the last equality, we have used the property that εt is independent and thus uncorrelated
with X0 for t > 0. For h > q, the second sum on the right runs over an empty set and
is thus zero. Therefore, we have shown that for h ≥ max(p, q + 1) the autocovariance
function satisfies the difference equation

C(h) =

p∑
j=1

φjC(h− j).

In particular, it decays to zero exponentially fast. Moreover, the properties are closely
linked to properties of the zeroes of the polynomial Φ. If Φ has two zeroes r exp(±iν) with
r close to one, then the covariance is (approximately) a damped harmonic with period
2π/ν.

In order to compute the values C(h) for h < max(p, q+ 1), we need Cov(εs, X0) for s ≤ 0.
These covariances can be computed from the causal representation:

Xt =

∞∑
j=0

ψjεt−j ⇒ Cov(εs, X0) = Var(ε)ψ−s (s ≤ 0).

19



Example: Autoregressions. For autoregressions, we only need Cov(ε0, X0) which is equal
to Var(ε). The autocovariances C(h) for 0 ≤ h ≤ p are then obtained from the equations

C(0)−
p∑
j=1

φjC(j) = Var(ε)

C(h)−
h∑
j=1

φjC(h− j)−
p∑

j=h+1

φjC(j − h) = 0 (1 ≤ h ≤ p).

These equations are called Yule-Walker equations. In Section 2.1 we computed the best
linear prediction X̂p|0:p−1: There we started with the covariances and computed the coef-

ficients β
(p)
k . We end up with the same equations and β

(p)
k = φk.

Example: ARMA(1,1). From

Xt = φXt−1 + εt + θεt−1

we obtain
Xt = φ2Xt−2 + εt + (φ+ θ)εt−1 + φθεt−2

and therefore ψ0 = 1, ψ1 = (φ + θ). Hence the autocovariances C(0) and C(1) can be
found by solving the equations

C(0) = φC(1) + Var(ε)(1 + θ(φ+ θ))

C(1) = φC(0) + Var(ε)θ.

This gives the variance

C(0) = Var(ε)
1 + 2θφ+ θ2

1− φ2

and the autocorrelations

ρ(1) = φ+
θ(1− φ2)

1 + 2θφ+ θ2
, ρ(h) = φh−1ρ(1) (h > 1).

The spectrum of an ARMA model follows easily from Lemma 2:

s(λ) = Var(ε)
|Θ(exp(−2πiλ))|2

|Φ(exp(−2πiλ))|2
.

If Φ has two zeroes r exp(±iν) with r close to 1, then the spectral density will have a
peak near λ = ν/(2π) and the process will have an approximately periodic behavior with
period 2π/ν.

Prediction from the infinite past: We assume that both Xt and εt have mean zero (i.e. we
have subtracted the mean). For a causal and invertible ARMA model

X̂t|−∞:t−1 =

p∑
j=1

φjXt−j +

q∑
j=1

θjεt−j

is then the best prediction of Xt based on the infinite past (Xs, s < t), and εt is the
prediction error. In order to compute it, one can either express εt−j with past observations
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by computing the coefficients πj according to the formula given above, or one can set
εs−1 = · · · = εs−q = 0 for a time point s << t and then iterate the relation

εu = Xu −
p∑
j=1

φpXu−p −
q∑
j=1

θkεu−k

for u = s, s+1, . . . t. The error due to assuming εs−1 = · · · = εs−q = 0 decays exponentially
as t− s→∞.

Predictions from the infinite past for more than one time step ahead can be made as
follows: Because the best prediction is linear, we obtain for k > 0

X̂t+k|−∞:t−1 =

min(p,k−1)∑
j=1

φjX̂t+k−j|−∞:t−1 +

p∑
j=k

φjXt+k−j +

q∑
j=k

θjεt+k−j .

Hence we see that the predictions for different lead times satisfy the difference equation
associated with the AR part, except for finitely many lead times at the beginning. In
particular, as the lead time increases, the predictions tend to zero, the mean of Xt.

3.3 Statistical inference for ARMA models

3.3.1 Estimation of coefficients

Estimation of the unknown parameters φj , θk and σ2
ε = Var(εt) is usually done with

exact or approximate Gaussian maximum likelihood (MLE). An unknown mean is usually
estimated first by the arithmetic mean of the data and then subtracted.

We have the following general formula for the density of X1, . . . , Xn

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , , xn−1).

In the Gaussian case, the conditional densities f(xt|x1, . . . , , xt−1) are again Gaussian with
mean equal to the best linear prediction X̂t|1:t−1 and variance equal to Var(Xt− X̂t|1:t−1).
For the exact MLE, one computes these means and variances exactly as a function of the
unknown parameters. An approximate likelihood uses X̂t|−∞:t−1 and Var(εt) instead where

X̂t|−∞:t−1 is computed recursively starting with ε0 = · · · = ε1−q = 0. In order to reduce
the effect of these artificial starting values, one typically omits the first r = max(p, q + 1)
factors in the likelihood, that is one takes

f(xr+1, . . . , xn|x1, . . . , xr) =
n∏

t=r+1

f(xt|x1, . . . xt−1).

For the AR(p) model, this reduces to the least squares estimator

arg min
n∑

t=p+1

(xt −
p∑
j=1

φjxt−j)
2

which is particularly simple to compute. In the autoregressive case, there are other estima-
tors: The Yule-Walker estimator determines the unknown φj and σ2

ε from the Yule-Walker

equations with estimated covariances Ĉ(h) (0 ≤ h ≤ p). . The Burg estimator proceeds
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recursively with respect to p, that is, it estimates the partial autocorrelations, and it does
this by minimizing forward and backward prediction errors.

For long series, all the different versions give similar estimates, but for shorter series and
parameters close to the boundary of the causality and invertibility region, the choice of
the estimator can matter. Usually one prefers the exact MLE or the Burg estimator.

3.3.2 Asymptotic properties of estimators

One can show that all estimators introduced in the previous section are consistent, and
the vector √

n((φ̂− φ)T , (θ̂ − θ)T )T

is asymptotically normal with mean zero and covariance matrix Γ(φ, θ). Here the elements
of Γ−1 are given by the covariances of the two autoregressive processes

Ut =

p∑
j=1

φjUt−j + Zt, Vt =

q∑
k=1

θkVt−j + Zt

where Zt is i.i.d. with mean zero and variance one. Because the same innovations are
used, these two processes are correlated. More precisely,(

Γ−1
)
jk

= Cov(Uj , Uk) (j ≤ p, k ≤ p)
= Cov(Vj−p, Vk−p) (j > p, k > p),

= Cov(Uj , Vk−p) (j ≤ p, k > p)

This holds if (Xt) is a causal and invertible ARMA model with no common zeroes in Φ(z)
and Θ(z) and the innovations are i.i.d. with mean zero and variance σ2. It is not required
that the innovations are normal although we use the Gaussian MLE (the same is true in
regression).

Example: For an AR(1) process
√
n(φ̂− φ) is asymptotically normal with mean zero and

variance (1− φ2) because Cov(U1, U1) = 1/(1− φ2).

3.3.3 Order selection

A simple technique is to identify the orders p and q from the plot of the autocorrelations
and partial autocorrelations. For an MA(q) process, all autocrrelations ρ(h) = 0 for h > q
whereas the partial autocorrelations τ(h) decay exponentially or like a damped harmonic
as h→∞. For an AR(p) process, the partial autocorrelations τ(h) are zero for h > p and
the autocorrelations decay exponentially or like a damped harmonic as h → ∞. For an
ARMA(p,q) process with p > 0 and q > 0 both τ(h) and ρ(h) decay exponentially or like
a damped harmonic.

Nowadays it is also possible to fit ARMA(p,q) models for all p ≤ p0 and q ≤ q0 and to
choose the one with the best fit afterwards. The most popular methods to choose the
order are then the selection critera AIC (Akaike Information Criterion) or BIC (Bayesian
Information Criterion). They are defined as follows:

−2 sup `(φ, θ, σ2
ε) + C(p+ q)
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where ` is the log likelihood function and C = 2 in case of the AIC and C = log(n)
in case of the BIC. If the order increases, the first term always increases because the
supremeum is taken over a larger set. The second term is a penalty for the complexity
of the model. If the estimates φ̂ and θ̂ are based on an approximate likelihood, then one
uses this approximate likelihood in the AIC or BIC instead of the exact likelihood `.

I do not discuss here the justification of these criteria, but just mention two results: 1)
The AIC is an unbiased estimate of a distance between the fitted and the true model. 2)
The AIC favors complex models and does not provide a consistent estimate of the true
order if the true order is finite.

3.3.4 Goodness of fit

Once a model has been fitted (that is both the orders and the parameters have been
estimated), one should check whether the fit is adequate. As a minimum, one should look
at the time series plot and the acf of the residuals ε̂t which approximate the innovations
εt and thus should be approximately i.i.d.. It is also a good idea to simulate from the
fitted model and compare the plot of a simulated series with the plot of the original series.
Ideally, the two plots should be visually indistinguishable. One can also look for nonlinear
dependence among the residuals, by using for instance lag plots (ε̂t+h versus ε̂t) or the acf
of the squared residuals, or for non-Gaussianity with a normal plot of the residuals.

3.4 ARIMA-Models

So far all ARMA models were stationary. One way to analyze nonstationary data is to
take differences, see 1.2. This can be included in the ARMA model:

Φ(B)(1−B)dXt = Φ∗(B)Xt = Θ(B)εt.

The polynomial Φ∗(z) has degree d+p and it has a root at z = 1 of multiplicity d and p roots
outside of the unit circle. Such a model is called an ARIMA(p, d, q) model (autoregressive
integrated moving average). Note that an ARIMA model is not unique: If (Xt, εt) satisfies
the above recursion, then so does (Xt + A0 + . . . Ad−1t

d−1, εt) for arbitrary coefficients
A0, . . . , Ad−1. In other words, the ARIMA model only specifies the conditional distribution
of X1, X2, . . . given the initial values X0, X−1, . . . , Xd−1, and not the distribution of these
initial values. Also note that if E(εt) 6= 0, then E(Xt) contains a term ctd with c 6= 0.
Because of this, one usually assumes that E(εt) = 0 if d > 0.

Whether we should choose d > 0 usually becomes clear from the inspection of the time
series plot (slowly changing level or slowly changing slope of the series) and of the acf
(behaviour of ρ̂(h) ∼ 1 − const.h with a small value of const.). Identifying p and q and
estimating the coefficients is then done based on the differenced series Yt = (1−B)dXt.

For forecasting, one usually assumes that the initial values X0, X−1, . . . , Xd−1 are inde-
pendent of the differenced series Yt = (1−B)dXt. Then the same formula can be used for
recursive computation of the forecast k steps ahead as in the stationary case.

If a series contains a seasonal component, then we often need to take also seasonal differ-
ences to achieve stationarity. This means that we use a model of the form

Φ(B)(1−B)d(1−BM )DXt = Θ(B)εt

23



where M is the number of observations in one seasonal cycle. Moreover, empirically the
seasonal behavior also shows up in the structure of the polynomials Φ and Θ. For instance
in the autoregressive case, Xt depends usually on Xt−1, Xt−M and maybe Xt−M−1. This
leads to the so-called seasonal ARIMA(p, d, q, P,D,Q) model:

Φ(B)ΦM (BM )(1−B)d(1−BM )DXt = Θ(B)ΘM (BM )εt

An example is given by the so-called airline model (because it fits the data on airline
passengers, one of the standard data sets in R, well):

(1−B)(1−BM )Xt = (1− θ1B)(1− θM,1B
M )εt.

4 Spectral methods

4.1 The spectral representation

4.1.1 Some results from deterministic spectral analysis

Fourier theory is concerned with the representation of signals g as a superposition of
harmonics with different frequencies and amplitudes. If g is a signal in continuous time t
with finite energy ∫ ∞

−∞
g(t)2dt <∞,

then it can be represented as

g(t) =

∫ ∞
−∞

G(ν) exp(i2πνt)dν (1)

where

G(ν) =

∫ ∞
−∞

g(t) exp(−i2πνt)dt. (2)

Hence g is a superposition of harmonics with continuous frequencies ν. If we write G(ν)
in polar coordinates G(ν) = |G(ν)| exp(iφ(ν)), we see that the harmonic G(ν) exp(i2πνt)
has amplitude |G(ν)| and phase φ(ν). Since g is real, G(−ν) = G(ν) and we also have
a representation in terms of sine and cosine functions with frequencies ν > 0. Moreover,
Parseval’s theorem says that ∫ ∞

−∞
g(t)2dt =

∫ ∞
−∞
|G(ν)|2dν,

i.e. the energy is the integral of squared amplitudes.

Next, we consider a signal (gt) observed at time points t∆ with t = 0,±1, . . . with finite
energy

∑∞
t=−∞ g

2
t <∞. If we replace the integrand in (2) by a function which is constant

on intervals of length ∆, then we obtain

Gp(ν) = ∆
∞∑

t=−∞
gt exp(−i2πt∆ν), (3)

and we can represent the signal with Gp:

gt =

∫ 1/(2∆)

−1/(2∆)
Gp(ν) exp(i2πt∆ν)dν. (4)

24



Hence again g is a superposition of harmonics, but the continuous frequencies ν are now
restricted to |ν| ≤ 1/(2∆). The reason for this is that in discrete time we cannot distinguish
between harmonics at frequencies ν, ν ± 1/∆, ν ± 2/∆ etc. . This is called aliasing, and
1/(2∆) is called the Nyquist frequency.

If we consider Gp as a function of arbitrary ν, then it is periodic with period 1/∆ (this is
the reason for the subscript p). Note that Gp(ν) 6= G(ν) for |ν| ≤ 1/∆, but rather

Gp(ν) =

∞∑
k=−∞

G(ν + k/∆) = G(ν) +

∞∑
k=1

(G(ν + k/∆) +G(−ν + k/∆)).

This means that we add up the amplitudes at all frequencies we cannot distinguish. Finally,
for a discrete time signal, Parseval’s theorem says that

∆

∞∑
t=−∞

g2
t =

∫ 1/(2∆)

−1/(2∆)
|Gp(ν)|2dν.

In the last step, we consider a signal g observed at finitely many discrete time points t∆
with t = 0, 1, . . . n− 1. By replacing the integrand in (4) by a function which is constant
on intervals of length 1/(n∆), we obtain the representation

gt =
1

n∆

n−1∑
k=0

Gk exp(i2πt∆
k

n∆
) =

1

n∆

n−1∑
k=0

Gk exp(i2πtk/n) (5)

whose inversion is

Gk = ∆
n−1∑
t=0

gt exp(−i2πtk/n). (6)

Hence the signal is now a superposition of harmonics with a finite number of frequencies
νk = k/(∆n), the so-called Fourier frequencies. Again Parseval’s theorem holds

∆

n−1∑
t=0

g2
t =

1

n∆

n−1∑
k=0

|Gk|2.

If we use (5) or (6) to define gt for any t ∈ Z or Gk for any k ∈ Z, we obtain periodic
sequences. If we restrict an infinite sequence with Fourier representation

gt =

∫ 1/(2∆)

−1/(2∆)
Gp(ν) exp(i2πt∆ν)dν,

to 0 ≤ t < n, then the relation between Gp(ν) and the discrete amplitudes Gk is

Gk = n∆

∫ 1/(2∆)

−1/(2∆)
Gp(ν) exp(−iπ(n− 1)(νk − ν)∆)Dn(|ν − νk|∆)dν

where Dn is the so-called Dirichlet kernel

Dn(ν) =
sin(nπν)

n sin(πν)
.

This means that the amplitude Gk in the discrete representation is a weighted average
of the amplitudes Gp(ν) for ν around νk. The phase shift in the above formula occurs
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because the time points are not symmetric around the origin. The proof of this formula
uses the the summation formula of a geometric series

n−1∑
t=0

eiλt =
eiλn − 1

eiλ − 1
= ei(n−1)λ/2 e

inλ/2 − e−inλ/2

eiλ/2 − e−iλ/2
= ei(n−1)λ/2 sin(nλ/2)

sin(λ/2)
.

The discrete Fourier transform (gt) → (Gk) can be computed by the Fast Fourier Trans-
form (FFT) with O(n log2(n)) operations instead of O(n2) operations in a naive imple-
mentation. This algorithm is crucial for the widespread use of Fourier methods in many
applications.

4.1.2 The spectral representation of stationary stochastic processes

For a stationary stochastic process (Xt; t ∈ Z), the energy
∑∞

t=−∞X
2
t is infinite, but if

second moments exist, the power (energy per time unit) converges to a finite value

1

2T + 1

T∑
t=−T

X2
t → E(X2

t ).

Hence we cannot expect to have a representation of the form

Xt(ω) =

∫ 1/2

−1/2
exp(i2πνt)Z(ν, ω)dν.

However, a deep result says that we have the representation

Xt(ω) = E(Xt) +

∫ 1/2

−1/2
exp(i2πνt)Z(dν, ω)

where Z is a (complex) stochastic process with uncorrelated increments:

1. Z(−ν)− Z(−ν − h) = Z(ν + h)− Z(ν) for all ν, h.

2. E(Z(ν + h)− Z(ν)) = 0 for all ν, h.

3. E|Z(ν+h)−Z(ν)|2 = S(ν+h)−S(ν) where S is the spectral distribution function
S(ν) = S([−1/2, ν]).

4. For ν < ν + h < ν ′ < ν ′ + h′, E((Z(ν + h)− Z(ν))(Z(ν ′ + h′)− Z(ν ′))) = 0.

Here the integral is defined as the limit of∑
j

exp(i2πνjt)(Z(νj , ω)− Z(νj−1, ω))

as the partition ν0 = −1/2 < ν1 < . . . < νJ = 1/2 becomes finer. Hence intuitively, the
process is a superposition of harmonics with uncorrelated mean zero amplitudes, and the
variance of the amplitudes are given by the increments of the spectrum. In other words,
the spectrum spectrum says how strongly the different frequencies are represented in the
process. If the spectral density exists, E(|Z(νj , ω)−Z(νj−1, ω)|2) is of the order νj − νj−1

and therefore |Z(νj , ω)−Z(νj−1, ω)| is typically of the order
√
νj − νj−1 > νj−νj−1. This
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is the crucial difference between the spectral representation here and the representations
in the previous subsection.

Formally, we can write the properties of Z as

E(Z(dν)Z(dν ′)) = δν,ν′S(dν)

where δν,ν′ = 0 for ν 6= ν ′ and δν,ν = 1 (the Kronecker delta). We then obtain the spectral
representation of the autocovariances (Herglotz’s Theorem)

C(k) = Cov(Xt+k(ω), Xt(ω)) =

∫ 1/2

−1/2

∫ 1/2

−1/2
exp(i2πν(t+ k)) exp(−i2πν ′t)E(Z(dν, ω)Z(dν ′, ω))

=

∫ 1/2

−1/2
exp(i2πνk)S(dν).

In particular,

E((Xt − E(Xt)
2) =

∫ 1/2

−1/2
S(dν)

which is the analogue of Parseval’s theorem.

4.1.3 Linear filters

A (time invariant) linear filter is a transformation of an input time series (Xt) into an
output time series (Yt) of the following form

Yt =
∑
k

akXt−k

The input or output can be either deterministic or stochastic. Usually one assumes that∑
k |ak| <∞ or some other condition in order that the right hand side is well defined.

If the input is an impulse at time zero, Xt = δt0, then the output is equal to Yt = at.
Because of this, the coefficients ak are called the impulse response coefficients. If the input
is a harmonic with frequency ν, Xt = G exp(i2πνt) then the output is again a harmonic
with the same frequency

Yt = GA(ν) exp(i2πνt), A(ν) =
∑
k

ak exp(−i2πνk).

There is however a change in amplitude by |A(ν)| and also a phase shift unless the coeffi-
cients are symmetric (a−k = ak). A(ν) is called the transfer function.

By linearity of the linear filter, a superposition of harmonic oscillations is transformed
into another superposition of harmonics where the amplitudes and phases are changed
by the transfer function. Stationary stochastic processes are superpositions of harmonic
oscillations:

Xt = E(Xt) +

∫ 1/2

−1/2
exp(i2πνt)Z(dν).

If the coefficients (ak) are summable,

Yt = A(0)E(Xt) +

∫ 1/2

−1/2
exp(i2πνt)A(ν)Z(dν).
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Therefore the spectral increment process of (Yt) is A(ν)Z(dν) and we have the following
relation between the spectral measures of (Xt) and (Yt):

SY (dν) = |A(ν)|2SX(dν)

(compare Lemma 2).

4.2 The periodogram

The periodogram of a time series of length n with sampling interval ∆ is defined as

In(ν) =
∆

n

∣∣∣∣∣
n∑
t=1

(Xt −X) exp(−i2πνt∆)

∣∣∣∣∣
2

.

In words, we compute the absolute value squared of the Fourier transform of the sample,
that is we consider the squared amplitude and ignore the phase.

Note that In is periodic with period 1/∆ and that In(0) = 0 because we have centered the
observations at the mean. The centering has no effect for Fourier frequencies ν = k/(n∆),
k 6= 0.

By mutliplying out the absolute value squared on the right, we obtain

In(ν) =
∆

n

n∑
t=1

n∑
s=1

(Xt −X)(Xs −X) exp(−i2πν(t− s)∆) = ∆
n−1∑

h=−n+1

Ĉ(h) exp(−i2πνh).

Hence the periodogram is nothing else than the Fourier transform of the estimated acf.
In the following, we assume that ∆ = 1 in order to simplify the formula (although for
applications the value of ∆ in the original time scale matters for the interpretation of
frequencies).

By the above result, the periodogram seems to be the natural estimator of the spectral
density

s(ν) =
∞∑

h=−∞
C(h) exp(−i2πνh).

However, a closer inspection shows that the periodogram has two serious shortcomings: It
has large random fluctuations, and also a bias which can be large.

We first consider the bias. Using the spectral representation, we see that up to a term
which involves E(Xt)−X

In(ν) =
1

n

∣∣∣∣∣
∫ n∑

t=1

e−i2π(ν−ν′)tZ(dν ′)

∣∣∣∣∣
2

= n

∣∣∣∣∫ e−iπ(n+1)(ν−ν′)Dn(ν − ν ′)Z(dν ′)

∣∣∣∣2 .
Taking the expectation on both sides and using the properties of Z, we obtain

E(In(ν)) = n

∫
Dn(ν − ν ′)2s(ν)dν ′.

In order to gain insight from this formula, we need to understand the behavior of the
Dirchlet kernel Dn and the so-called Fejér kernel

Fn(ν) = nDn(ν)2.
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It can be checked that Fn(0) = n, Fn(ν) → 0 as n → ∞ for all 0 < |ν| ≤ 1/2 and∫ 1/2
−1/2 Fn(ν) = 1 for all n. Hence Fn approximates the Dirac delta function and for a

continuous density we obtain E(In(ν))→ s(ν) for any ν 6= 0.

Still, for some applications, the bias of the periodogram can be substantial. In such cases
the bias is reduced if we use a so-called taper. This is a set of weights h1, h2, . . . , hn which
are one for t close to n/2 and decay smoothly to zero for t near 1 and n. With these
weights, we compute the tapered periodogram as follows

Ihn(ν) =
1∑n
t=1 h

2
t

∣∣∣∣∣
n∑
t=1

ht(Xt −X) exp(−i2πνt)

∣∣∣∣∣
2

.

If we use a taper, then we obtain

E(Ihn(ν)) =

∫
Hn(ν − ν ′)s(ν ′)dν ′

where

Hn(ν) =
1∑n
t=1 h

2
t

∣∣∣∣∣
n∑
t=1

ht exp(−2πiνt)

∣∣∣∣∣
2

.

If ht is as described above, Hn(ν) has smaller sidelobes than the Fejér kernel.

The variances and covariances of the periodogram depend in principle on the fourth mo-
ments of the process. However, for many processes a Central Limit Theorem applies for the
Fourier transform and thus the real and imaginary part of

∑
ht(Xt −X) exp(2πiνt) have

asymptotically a normal distribution with mean zero and variance s(ν)/2 for ν 6= 0, 1/2.
Because of this

Ihn(ν)

s(ν)
approximately ∼ Exp(1).

In particular, the periodogram is an asymptotically unbiased, but not consistent estimator
for the spectral density, and [

Ihn(ν)

− log(0.025)
,

Ihn(ν)

− log(0.975)

]
is an approximate 95% confidence interval for s(ν). On the logarithmic scale, this interval
has constant width.

For two different frequencies ν 6= ν ′, the periodogram values are asymptotically indepen-
dent, in particular the covariance tends to zero. This explains the irregular behavior of the
periodogram as a function of frequency. Because of this and because of the inconsistency,
the periodogram is of limited value.

For two frequencies close together, we have the following approximation

Cov(Ihn(ν), Ihn(ν ′)) ≈ s(ν)s(ν ′)∑n
t=1 h

2
t

∣∣∣∣∣
n∑
t=1

h2
t exp(−2πi(ν − ν ′)t)

∣∣∣∣∣
2

.

Without a taper, i.e. for ht ≡ 1, the periodogram values at two Fourier frequencies j/n
and j′/n are thus approximately uncorrelated. This does not hold if we use a taper.

I refer to the literature for exact statements and proofs of these results.
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4.3 Smoothing the periodogram

The reason why the periodogram is not consistent is that as the length n of the time series
increases , we obtain independent estimates of the spectral density at an increasingly dense
set of Fourier frequencies νk = k/n. If the spectral density is smooth, we can therefore
pool the information from nearby frequencies.

The tapered and smoothed spectral estimate is

ŝ(ts)(k/n) =
J∑

j=−J
wjI

h
n((k − j)/n),

where the wj ’s are weights with the following properties

wj > 0, wj = w−j (−J ≤ j ≤ J),

J∑
j=−J

wj = 1.

If k ≤ J , the smoothing includes the periodogram at the origin which is equal or very
close to zero if the mean µ is estimated. In this case, we exclude j = k from the sum and
renormalize the weights.

The properties of this estimator can be derived by the same arguments that are used
for kernel smoothers in nonparametric regression. If we neglect the bias of the tapered
periodogram, the bias of ŝ(ts) is approximately

s′′(k/n)

2

1

n2

J∑
j=−J

j2wj .

The variance of ŝ(ts)(k/n) depends on whether or not a taper is used. Without a taper
the summands are approximately uncorrelated, and we obtain for k 6= 0, n/2

Var(ŝ(ts)(k/n)) ≈ s(k/n)2
J∑

j=−J
w2
j .

With a taper, we have to take the correlation of the summands into account. We skip the
details and just state that in this case the variance is increased by the factor

M(h) =
1
n

∑n
t=1 h

4
t

( 1
n

∑n
t=1 h

2
t )

2
.

By Cauchy-Schwarz, M(h) is strictly greater than one unless ht is constant, and thus
asymptotically tapering entails some loss of precision. However, this is often more than
compensated by a reduction in bias.

The choice of J , that is the number of frequencies involved in the smoothed estimate,
is difficult. Small values of J give a small bias, but a large variance, and vice versa.
Asymptotically, the optimal choice is J = O(n4/5), but the constants involve both s and
s′′ which are unknown. In practice, one often looks at the estimate for different values of
J and then makes a subjective choice.
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The above results imply that to a first approximation

E

(
ŝ(ts)(k/n)

s(k/n)

)
= 1, Var

(
ŝ(ts)(k/n)

s(k/n)

)
=

J∑
j=−J

w2
j M(h).

Because the periodogram values have asymptotically an exponential distribution and
the sum of m independent exponential random variables is distributed as 1/2 times a
chisquared random variable with 2m degrees of freedom, one approximates the distribu-
tion of ŝ(ts)(k/n)/s(k/n) by Zd/d where Zd ∼ χ2

d and the degrees of freedom d are chosen
to match the variance given above. This then leads to the following confidence interval
for s(k/n) [

ŝ(ts)(k/n) d

χ2
d,1−α/2

,
ŝ(ts)(k/n) d

χ2
d,α/2

]
where d =

2∑J
j=−J w

2
j M(h)

.

4.4 Alternative estimators of the spectrum

So far, we have averaged over the values of the periodogram at the Fourier frequencies
k/n because they are approximately independent in the case of no taper and because the
fast Fourier transform can be used for computation. We can also use a different grid k/n′

with n′ > n (we then have to set Xt = X̄ for n < t ≤ n′ in order to use the fast Fourier
transform). In the limit we then have a continuous average

ŝ(lw)(ν) =

∫
W (ν − ν ′)Ihn(ν ′)dν ′.

This can be shown to be equal to

n−1∑
k=−n+1

wkĈ
h(k) exp(−2πiνk)

where

wk =

∫
W (ν) exp(2πiνk)dν

and

Ĉh(k) =
1∑n
t=1 h

2
t

n−|k|∑
t=1

ht(Xt − X̄)ht+|k|(Xt+|k| − X̄)

are the autocovariances of the tapered series. In other words, smoothing of the peri-
odogram is equivalent to downweighting the estimated autocovariances in the inversion
formula

s(ν) =

∞∑
k=−∞

C(k) exp(−2πikν).

This estimator is therefore called a lag weight estimator (which explains the superscript
lw). For computational reasons, ŝ(ts) is usually prefered.

A different approach consists in averaging the periodograms for segments of m < n con-
secutive observations:

ŝ(os)(ν) =
1

J
∑m

t=1 h
2
t

J−1∑
j=0

∣∣∣∣∣
m∑
t=1

ht(Xt+jd − X̄)e−2πiνt

∣∣∣∣∣
2
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where J is the integer part of (n − m)/d. The parameter d regulates how much the
segments overlap: For d = 1 we have maximal overlap whereas for d = m there is no
overlap (os stands for overlapping segments). It can be shown that in case of maximal
overlap, this is essentially a lag weight estimator. It has however the advantage that it
gives also information about changes in the periodogram over time. It is thus the first
step towards a time-frequency analysis where one wants to analyze how strongly different
frequencies are present at different times. This is however an ill-posed question since by
Heisenberg’s uncertainty principle a high resolution in time entails a low resolution in
frequency and vice versa.

An entirely different approach to spectral estimation consists in using the spectral density
of a fitted autoregressive model. Usually, one chooses the order of the autoregression by
AIC. This usually gives very smooth estimates, but sometimes details are lost that can be
detected by ŝ(ts). A combination of both methods fits an autoregression, usually of low
order without assuming that the innovations

εt = Xt −
p∑

k=1

φkXt−k

are exactly white noise. In any case, the general formula

sX(ν) =
sε(ν)

|1−
∑
φk exp(−2πiνk)|2

.

holds, and one estimates sε(ν) by smoothing the periodogram of the residuals. Even when
sε(ν) is not exactly constant, it is at least much flatter than sX(ν) and thus the problems
with the bias are less serious. This approach is called prewhitening.

4.5 Wavelets in time series analysis

Wavelets are a rather recent invention which is suitable both for smoothing time series and
for a time-frequency analysis. We can only give a very brief introduction. The discrete
wavelet transform decomposes an equispaced time series of length n as follows:

Xt =
J∑
j=1

2−jn−1∑
k=0

dj,k2
−j/2ψ(2−jt− k) +

2−Jn−1∑
k=0

aJ,k2
−J/2φ(2−J t− k) (t = 0, 1, . . . , n− 1)

where ψ is the so-called mother wavelet – a small wave located near zero – and φ is the so-
called father wavelet or scaling function which represents a smooth part. Hence we have a
decomposition into oscillations with frequencies 2−j located at times k2j for j = 1, 2, . . . , J
and a part which contains the lower frequencies. The simplest example is the Haar wavelet
where

ψ(t) = 1[0,1/2)(t)− 1[1/2,1)(t), φ(t) = 1[0,1)(t).

For other cases, ψ and φ are defined through a limiting operation and thus have to be
calculated numerically.

The amplitudes dj,k and aJ,k are computed from the original series by iterative application
of an orthogonal transformation. We start with a0,t = Xt and set for j = 1, 2, . . . , J ≤
log2(n)

aj,t =

L−1∑
`=0

g` aj−1,2t+1−`, dj,t =

L−1∑
`=0

h` aj−1,2t+1−` (t = 0, 1, . . . , 2−jn− 1).
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(all indices are extended periodically). In words, we take the coefficients aj−1,t for odd
times and apply to them two linear filters with impulse response coefficients g` and
h` = (−1)`gL−`−1, respectively. The coefficients g` are defined through the father wavelet
(details omitted). They can be chosen arbitrarily subject to the constraints that L must
be even and

L−1∑
`=0

g` =
√

2,
L−1−2n∑
`=0

g`g`+2n = δn,0 (n = 0, 1, . . . , L/2− 1).

For L = 2, 4 there is essentially only one solution, e.g. for L = 2 we have g0 = g1 = 1/
√

2.
For L ≥ 6, there are several solutions.

Because the discrete wavelet transform is a product of orthogonal linear transformations
and thus is again linear and orthogonal, the computation of the inverse is easy. For
smoothing, one typically sets dj,k and aJ,k equal to zero if their absolute value is small
and then applies the inverse transform. This retains features in the data which are not
smooth in a conventional sense.

In the maximal overlap discrete wavelet transform, one uses the above recursions without
omitting coefficients aj−1,t for even t:

ãj,t = 2−j/2
L−1∑
`=0

g` ãj−1,t−2j−1`, d̃j,t = 2−j/2
L−1∑
`=0

h` ãj−1,t−2j−1` (t = 0, 1, . . . , n− 1).

This creates redundancies, but is sometimes easier for a time-frequency interpretation.

If Xt is a stochastic process, the amplitudes aj,t and dj,t are random variables, and one can
study their distributions. Because the wavelet transform is orthogonal, these amplitudes
are again i.i.d. for Gaussian white noise. It turns out that also under dependence they
become apprxoimately independent like the periodogram values. In addition, the average
of the a2

j,t for fixed j is essentially an estimate of the spectrum integrated over the fre-

quency interval [2−j−1, 2−j ]. A key difference is however that this holds also for integrated
processes: We only need that (1−B)dXt is stationary for some d < L/2.

5 Further topics

5.1 Multivariate time series

In a multivariate time series we have at each observation time a random vector Xt = (Xti).
The definition of stationarity is unchanged. The mean E(Xt) is then also a vector which
is independent of t under the assumption of stationarity. The covariance Cov(Xt+h,Xt)
is now a matrix which depends only on h in the stationary case:

C(h)ij = Cov(Xt+h,i, Xtj).

It is called the cross covariance function. Because the covariance is symmetric, we obtain

C(−h)ij = Cov(Xt−h,i, Xtj) = Cov(Xti, Xt+h,j) = C(h)ji,

that is C(−h) = C(h)T . The cross correlations are defined as

ρ(h)i,j =
C(h)ij√

C(0)iiC(0)jj
.
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The estimation of the mean, the cross covariances and the cross correlations is done as
in the univariate case. The judgement of estimated cross correlations is however delicate
because the variance depends on cross- and autocorrelations of all lags. If either (Xt1) or
Xt2 is white noise and if the true value ρ12(h) = 0, then ρ̂12(h) is asymptotically normal
with mean zero and variance 1/n.

Multivariate ARMA-models are defined similarly to the univariate case:

Xt =

p∑
j=1

φjXt−j + εt +

q∑
j=1

θjεt−j

where the φj and θj are now matrices and εt is so-called multivariate white noise, that is
Cε(h) = 0 for h 6= 0 whereas Cε(0) is an aribtrary positive definite matrix (the innovations
for different components of the time series can be correlated). Causality and invertibility
of multivariate ARMA models are defined as in the univariate case. The condition for
causality becomes

det(Φ(z)) 6= 0 for |z| ≤ 1, where Φ(z) = I −
p∑
j=1

φjz
j .

and for invertibility

det(Θ(z)) 6= 0 for |z| ≤ 1, where Θ(z) = I +

p∑
j=1

θjz
j .

Also the computation of cross covariances and of linear predictions for known parameters
is similar to the univariate case. The estimation of the unknown parameters is however
much more difficult in the multivariate case than in the univariate case: First, the number
of parameters grows quickly with the orders p and q, and the likelihood surface can have
easily multiple maxima.

In a multivariate AR model, Xti is influenced by all other components of past observations.
In some applications, one assumes that the influence goes only in one direction:

Xt2 =

∞∑
j=0

βjXt−j,1 + Ut

where (Ut) is a stationary process uncorrelated with (Xt1). This is called a transfer
function model. In order to be able to estimate the infinitely many coefficients βj , we
assume that they are obtained through a Taylor series of a rational function

∞∑
j=0

βjzj =
1 +

∑q
j=1 αjz

j

1−
∑p

j=1 γjz
j
.

Moreover, one also assumes that the error process Ut is an ARMA process. Then for given
orders, we have a parametric model and can estimate the parameters. The choice of the
orders can however be difficult.

Cointegration is a rather recent method (for which Clive Granger got the Nobel Prize in
Economics in 2003). This is a special method for multivariate integrated series. In order to
explain the main idea, We consider the bivariate case and assume that both (Xt1) and Xt2
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are nonstationary, but (1−B)Xt1 and (1−B)Xt2 are stationary. Then it can happen that
some linear combination Yt = β1Xt1 +β2Xt2 is stationary. For instance, a macroeconomic
series of two countries can both be nonstationary, but the difference can be stationary
because of strong economic relations between the two countries. If this is the case, then
(β1, β2) is called a cointegrating vector. If such a cointegrating vector exists, then fitting
a model to the differenced series (1−B)Xt is not a good procedure.

As in the univariate case, the cross covariance cannot be an aribtrary function of the lag
h. There is a condition of positive definiteness which is satisfied if and only if we have the
representation

C(h)jk =

∫ 1/2

−1/2
e2πihνS(dν)jk

where S is a non-negative definite matrix distribution. If
∑

h |C(h)jk| <∞, then the Sjk
have densities (s(ν)jk) where

s(ν)jk =
∞∑

h=−∞
C(h)jke

−2πiνh.

However, the densities sjk(ν) are typically not real for j 6= k, but sjk(−ν) = sjk(ν) =
skj(ν) holds and the matrix (sjk(ν)) is nonnegative definite. The real part of sjk is called
the cospectrum and minus the imaginary part the quadspectrum.

Spectra of multivariate ARMA processes. The following formula holds

s(ν) = Φ(e2πiν)−1Θ(e2πiν)Cε(0)Θ(e−2πiν)TΦ(e−2πiν)−T .

In the multivariate case, we have again the spectral representation

Xtj =

∫ 1/2

−1/2
e2πiνtZj(dν)

where
E(Zj(dν)Zk(dν ′)) = δν,ν′S(dν)jk.

This says that the amplitudes in the spectral representation are uncorrelated for different
frequencies, and the spectrum contains the information about the absolute values and the
linear relations between amplitudes at the same frequencies.

As an example of the use of the spectrum, we mention the problem of approximating Xt2

linearly by the values of the series (Xs1). Assuming that both series have mean zero,

X̂t2 =

∞∑
j=−∞

ψjXt−j,1.

We want to find the coefficients (ψj) such that the mean square error E((Xt2 − X̂t2)2) is
minimal. It turns out that the solution is most easily found in the frequency domain:

ψj =

∫ 1/2

−1/2

s21(ν)

s11(ν)
e2πiνjdν

and

E((Xt2 − X̂t2)2) =

∫ 1/2

−1/2

(
1− |s2,1(ν)|2

s11(ν)s22(ν)

)
s22(ν)dν.
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Without the first series, the best prediction is zero and the mean squared error is
∫ 1/2
−1/2 s22(ν)dν.

Estimation of the spectrum begins with the matrix periodogram

In(ν)jk =
1

n
(

n∑
t=1

(Xtj − X̄.j)e
−2πitν)(

n∑
t=1

(Xtk − X̄.k)e
2πitν)

and smoothes it by averaging over neighboring frequencies.

5.2 Long range dependence

A stationary process (Xt) is called long range dependent (or long memory) with parameter
d ∈ (0, 0.5), if

C(h) = Cov(Xt+h, Xt) ∼ c h2d−1 (h→∞).

Note that for such a process
∑

h |C(h)| =∞. Under additional technical conditions, this
is equivalent to

Var(

n∑
t=1

Xt) ∼
c

d(1 + 2d)
n1+2d

and

S(dν) = s(ν)dν, with s(ν) ∼ cΓ(1− d)Γ(d)

(2π)2dΓ(1− 2d)
|ν|−2d (ν → 0).

The first result implies that the variance of the arithmetic mean decays to zero like n−1+2d,
i.e. at a lower rate than in the case where the autocovariances are summable.

There are two explicit models which show this behavior. The first one are the increments
of fractional Brownian motion (Bd(t); t ≥ 0) with parameter d: This is a Gaussian (non-
stationary) process with E(Bd(t)) = 0, Var(Bd(t)) = t2d+1 and Var(Bd(t) − Bd(s)) =
Var(Bd(t− s)). Hence, the increments Xt = Bd(t)−Bd(t− 1) form a stationary Gaussian
process with autocovariance

C(h) =
1

2
(|h+ 1|2d+1 − 2|h|2d+1 + |h− 1|2d+1)

This process is central because for any Gaussian long range dependent process, the block
sums

Zt =
1

n1/2+d

tn∑
s=(t−1)n+1

(Xs − E(Xs))

converge in distribution to it. The formula for the spectral density is however rather
complicated.

The other important example of a long range dependent process is given by fractional
differences:

(1−B)dXt = εt ⇔ Xt = (1−B)−dεt

where B is the backshift operator that we used for ARMA models and (εt) is white noise.
We define fractional differences through the Taylor expansion of (1− z)−d, that is

Xt =
∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εt−j .
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The coefficients on the right are not summable, but their squares are and one can show
that the series converges and defines a stationary process. Moreover, the theory of linear
filters gives the spectral density

s(ν) =
σ2
ε

|1− exp(2πiν)|2d
=

σ2
ε

(2 sin(πν))2d
∼ σ2

ε

(2π)2d
|ν|−2d.

For fractional differences, one can also compute the acf. One obtains

C(h) =
σ2
εΓ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(h− d+ 1)
∼ σ2

εΓ(1− 2d)

Γ(1− d)Γ(d)
h2d−1.

Fractional differences exist also for d < 0: In this case the spectrum has a zero at ν =
0. Combined with integer differences we can therefore define the fractionally differenced
process for any d: It is stationary for d < 1/2, whereas for d ≥ 1/2 the [d + 1/2]-th
difference is stationary. Finally, instead of assuming that (1 − B)dXt is white noise, we
can assume that this is a stationary, causal and invertible ARMA process:

Φ(B)(1−B)dXt = Θ(B)εt.

This is the fractional ARIMA(p, d, q) model.

The best way to decide whether long range dependence is present, is to look at the peri-
odogram in log-log scale, that is we plot log(In(k/n)) versus log(k/n) for k = 1, 2, . . . n/2.
If these points scatter around a line with negative slope, this indicates long range depen-
dence. Moreover, we can estimate d as −1

2 times the slope. The approximate independence
of periodogram values still holds. In fact, we can obtain estimates of the parameters of a
fractional ARIMA model by treating the In(k/n) as independent exponential(1/s(k/n))-
random variables and using maximum likelihood. We thus maximise

−
n/2∑
k=1

(
log s(k/n) +

In(k/n)

s(k/n)

)
with respect to the unknown parameters which appear in the spectrum s(ν) of the model.
It is asymptotically equivalent to the exact Gaussian MLE, but much easier to compute.
It also turns out that the estimator of d converges with rate n−1/2, despite the long rnage
dependence.

5.3 State space models

Due to lack of time, this topic is not covered in this course.

5.4 Nonlinear parametric models

I intended to discuss threshold autoregressions, ARCH and GARCH models. Due to lack
of time, I could not cover it.
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