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THE LASSO, CORRELATED DESIGN, AND IMPROVED
ORACLE INEQUALITIES∗

By Sara van de Geer and Johannes Lederer

ETH Zürich
We study high-dimensional linear models and the `1-penalized

least squares estimator, also known as the Lasso estimator. In liter-
ature, oracle inequalities have been derived under restricted eigen-
value or compatibility conditions. In this paper, we complement this
with entropy conditions which allow one to improve the dual norm
bound, and demonstrate how this leads to new oracle inequalities.
The new oracle inequalities show that a smaller choice for the tuning
parameter and a trade-off between `1-norms and small compatibil-
ity constants are possible. This implies, in particular for correlated
design, improved bounds for the prediction error of the Lasso esti-
mator as compared to the methods based on restricted eigenvalue or
compatibility conditions only.

1. Introduction. We derive oracle inequalities for the Lasso estimator
for various designs. Results in literature are generally based on restricted
eigenvalue or compatibility conditions (see Section 3 for definitions). We refer
to [2], [4], [5], [6], [8], [10], [11]. See also [3] and the references therein. In a
sense, compatibility or restricted eigenvalue conditions and the so-called dual
norm bound we describe below belong together. In contrast, if compatibility
constants or restricted eigenvalues are very small, the design may have high
correlations, and then the dual norm bound is too rough. In this paper, we
discuss an approach that joins both situations. The work is a follow-up of
[12]. It combines results of the latter with the parallel developments in the
area based on the dual norm bound.

We consider an input space X and p feature mappings ψj : X → R, j =
1, . . . , p. We let (x1, . . . , xn)T ∈ X n be a given input vector, and Y :=
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(Y1, . . . ,Yn)T ∈ Rn be an output vector, and consider the linear model

Y =
p∑
j=1

ψjβ
0
j + ε,

with ε ∈ Rn a noise vector, and β0 ∈ Rp a vector of unknown coeffi-
cients. Here, with some abuse of notation, ψj denotes the vector ψj =
(ψj(x1), . . . , ψj(xn))T . The design matrix is X := (ψ1, . . . , ψp) and the Gram
matrix is

Σ̂ := XTX/n.

Throughout, we assume that
∑n
i=1 ψ

2
j (xi) ≤ n for all j.

We write a linear function with coefficients β as fβ :=
∑p
j=1 ψjβj , β ∈ Rp.

The Lasso estimator is

β̂ := arg min
β

{
‖Y − fβ‖22/n+ λ‖β‖1

}
.

We denote the estimator of the regression function f0 := fβ0 by f̂ := fβ̂.

Oracle results using compatibility or restricted eigenvalue conditions are
based on the dual norm bound

sup
‖β‖1=1

|εT fβ|/n = max
1≤j≤p

|εTψj |/n.

Let us define

‖fβ‖2n :=
n∑
i=1

f2
β(xi)/n = βT Σ̂β.

The point we make in this paper is that the dual norm bound does not take
into account possible small values for ‖fβ̂ − fβ0‖n. Our results are based on
bounds for

sup
‖β‖1≤1, ‖fβ‖n≤R

|εT fβ|/n

as function of R > 0. We then apply these to β̂−β0 (or β0 here replaced by a
sparse approximation). We use an improvement of the dual norm bound, and
show in Theorem 4.1 the consequences. The main observation here is that
with highly correlated design, one can generally take the tuning parameter
λ of much smaller order than the usual

√
log p/n. Moreover, small compati-

bility constants may be traded off against the `1-norm of the coefficients of
an oracle.
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2. Organization of the paper. In Section 3, we present our notation,
and the definitions of compatibility constants and restricted eigenvalues.
Section 4 contains the main result, based on a pre-assumed improvement
of the dual norm bound. In Section 5, we present a result from empirical
process theory, which shows that the improvement of the dual norm bound
used in Section 4 holds under entropy conditions on F := {fβ : ‖β‖1 = 1}.
In Section 6, we first give a geometrical interpretation of the compatibility
constant and discuss the relation with eigenvalues. The next question to
address is then how to read off the entropy conditions directly from the
design. We show that a Gram matrix with strongly decreasing eigenvalues
leads to a small entropy of F . Alternatively, we derive an an entropy bound
for F based on the covering number of the design {ψj}, a result much in the
spirit of [7]. We moreover link these covering numbers with the correlation
structure of the design. Section 7 concludes and Section 8 contains proofs.

3. Notation and definitions.

3.1. The compatibility constant. Let S ⊂ {1, . . . , p} be an index set with
cardinality s. We define for all β ∈ Rp,

βS,j := βj l{j ∈ S}, j = 1, . . . , p, βSc := β − βS .

Below, we present for constants L > 0 the compatibility constant φ(L, S)
introduced in [10]. For normalized ψj (i.e., ‖ψj‖n = 1 for all j), one can
view 1−φ2(1, S)/2 as an `1-version of the canonical correlation between the
linear space spanned by the variables in S on the one hand, and the linear
space of the variables in Sc on the other hand. Instead of all linear combi-
nations with normalized `2-norm, we now consider all linear combinations
with normalized `1-norm of the coefficients. For a geometric interpretation,
we refer to Section 6.

Definition The compatibility constant is

φ2(L, S) := min{s‖fβS − fβSc‖
2
n : ‖βS‖1 = 1, ‖βSc‖1 ≤ L}.

The compatibility constant is closely related to (and never smaller than) the
restricted eigenvalue as defined in [2], which is

φ2
RE(L, S) = min

{‖fβS − fβSc‖2n
‖βS‖22

: ‖βSc‖1 ≤ L‖βS‖1
}
.
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See also [8], and see [13] for a discussion of the relation between restricted
eigenvalues and compatibility.

3.2. Projections. As the “true” β0 is perhaps only approximately sparse,
we will consider a sparse approximation. The projection of f0 := fβ0 on the
space spanned by the variables in S is

fS := arg min
f=fβS

‖f − f0‖n.

The coefficients of fS are denoted by bS , i.e.,

fS = fbS .

Note that fS only has non-zero coefficients inside S, that is, (bS)S = bS .

4. Main result. We let Tα be the set

Tα :=
{

sup
β

4|εT fβ|/n
‖fβ‖1−αn ‖β‖α1

≤ λ0

}
.

Here, 0 ≤ α ≤ 1 and λ0 > 0 are fixed constants.

Note that on Tα,

sup
‖β‖1=1, ‖fβ‖n≤R

|εT fβ|/n ≤ λ0R
1−α/4,

i.e., we have a refinement of the dual norm bound described in Section 1.

Note that for fixed λ0 and for α < α̃, it holds that Tα ⊂ Tα̃. This is because
by the triangle inequality

‖fβ‖n = ‖
∑
j

ψjβj‖n ≤
∑
j

‖ψj‖n|βj | ≤ ‖β‖1.

We want to choose α preferably small, yet keep the probability of the set Tα
large. For α = 1, one has

T1 =
{

max
1≤j≤p

4|εTψj |/n ≤ λ0

}
,

by the dual norm bound. Thus, e.g. when ε ∼ N (0, I), the probability IP(T1)
of T1 is large when λ0 �

√
log p/n. We detail in Section 5 how one can

lowerbound IP(Tα) for a proper value of α depending on the design {ψj}.
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Generally, the value for λ0 will be of order
√

log p/n, as in the case α = 1,
or λ �

√
log n/n or even λ0 � 1/

√
n.

The choice of the tuning parameter λ depends on λ0. The following technical
lemma will be used:

Lemma 4.1. Let 0 ≤ α ≤ 1 and let a, b and λ0 be positive numbers. Then

λ0a
1−αbα ≤ 1

2
a2 + λb+

1
2

(
λ0

λα

) 2
1−α

.

Here, when α = 1,

(
λ0

λα

) 2
1−α

=
(
λ0

λ

)∞
:=


∞ λ < λ0

1 λ = λ0

0 λ > λ0

.

In the proof of the main result, Theorem 4.1, we invoke Lemma 4.1 to handle
the “noise part” εT fβ with β = β̂−β0 (or actually with β0 replaced here by
a sparse approximation). On Tα, it holds that

4|εT fβ|/n ≤
1
2
‖fβ‖2n + λ‖β‖1 +

1
2

(
λ0

λα

) 2
1−α

,

uniformly in β ∈ Rp. In the right hand side of this inequality, the first term
‖fβ‖2n/2 can be incorporated in the risk and the second term λ‖β‖1 will be
overruled by the penalty. Finally, the third term (λ0/λ

α)
2

1−α /2 governs the
choice of the tuning parameter λ.

We now come to the main result. We formulate it for an arbitrary index set
S partitioned in sets S1 and S2 in an arbitrary way. We will elaborate on the
choice of S in Remarks 4.2 and 4.5. Corollaries 4.1 and 4.2 take for a given
S some special choices for the tuning parameter λ and for the partition of
S into S1 and S2.

Recall that fS is the projection of f0 = fβ0 and bS are the coefficients of fS .

Theorem 4.1. Let S be an arbitrary index set, partitioned into two sets
S1 and S2, i.e. S = S1 ∪S2, S1 ∩S2 = ∅. Let s1 be the cardinality of S1. Let
Tα be the set

Tα :=
{

sup
β

4|εT fβ|/n
‖fβ‖1−αn ‖β‖α1

≤ λ0

}
.
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Then on Tα,

‖f̂−f0‖2n+λ‖β̂−bS‖1 ≤
56λ2s1
φ2(6, S1)

+
28
3
λ‖(bS)S2‖1+

7
6

(
λ0

λα

) 2
1−α

+7‖fS−f0‖2n.

Remark 4.1. We did not attempt to optimize the constants we provided
in Theorem 4.1.

Remark 4.2. Given a value of the tuning parameter λ, we can now define
the estimation error using the variables in S as

E(S) := min
S1⊂S, S2=S\S1

8λ2s1
φ2(6, S1)

+
4
3
λ‖(bS)S2‖1.

The oracle set S∗ is then the set which trades off estimation error and ap-
proximation error, i.e, the set S∗ that minimizes

E(S) + ‖fS − f0‖2n.

Note that S∗ depends on λ, say S∗ = S∗(λ). The best value for the tuning
parameter λ∗ is then obtained by minimizing

E(S∗(λ)) +
1
6

(
λ0

λα

) 2
1−α

+ ‖fS∗(λ) − f0‖2n.

Remark 4.3. In practice, the tuning parameter λ can be chosen by cross-
validation. As this method tries to mimic minimization of the prediction
error, it can be conjectured that one then arrives at rates at least a good as
the ones we discuss here choosing values of λ depending on the design, the
(unknown) error distribution, and the unknown sparsity. This is however
not rigorously proven.

Remark 4.4. We have restricted ourselves to improvements of the dual
norm bound of the form given by sets Tα. The situation can be generalized
by considering sets of the form{

sup
β

4|εT fβ|/n
G−1(‖fβ‖n/‖β‖1)‖β‖1

≤ λ0

}
,

where G is a given increasing convex function with G(0) = 0.

Corollary 4.1.
a) If we take S2 = ∅, we have S1 = S, and s1 = |S| =: s. This is a good
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choice when the compatibility constants are large for all subsets of S. With
the choice

λ2 � λ2
0

(
φ2(6, S)

s

)1−α
,

we get on Tα,

‖f̂ − f0‖2n + λ‖β̂ − bS‖1 = O
(
λ2

0

(
s

φ2(6, S)

)α
+ ‖fS − f0‖2n

)
.

Recall that the dual norm bound has α = 1. With λ0 �
√

log p/n we then
arrive at the “usual” oracle inequality as provided by, among others, [2], [4],
[5], [6], [8] [10], [11]. When α < 1, the compatibility constant may be very
small, as the design is highly correlated. The effect is however somewhat
tempered by the power α in the bound.
b) More generally, let

λ2 � λ2
0

(
φ2(6, S1)

s1

)1−α
,

Then on Tα,
‖f̂ − f0‖2n + λ‖β̂ − bS‖1

= O

λ2
0

(
s1

φ2(6, S1)

)α
+ λ0

(
φ2(6, S1)

s1

) 1−α
2

‖(bS)S2‖1 + ‖fS − f0‖2n

 .
Corollary 4.2.
a) With the choice S1 = ∅, the result does not involve the compatibility
constant. This may be desirable when the design is highly correlated. The
result then corresponds to what is sometimes called “slow rates”, although
we will see that when α < 1, the rates can still be much faster than 1/

√
n.

When α = 1, we must take λ > λ0 (due to the term (λ0/λ
α)

2
1−α ). When

α < 1, we choose

λ � λ
2

1+α

0 ‖bS‖
− 1−α

1+α

1 .

We get on Tα,

‖f̂ − f0‖2n + λ‖β̂ − bS‖1 = O
(
λ

2
1+α

0 ‖bS‖
2α

1+α

1 + ‖fS − f0‖2n
)
.

b) More generally, let

λ � λ
2

1+α

0 ‖(bS)S2‖
− 1−α

1+α

1 .
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Then on Tα,
‖f̂ − f0‖2n + λ‖β̂ − bS‖1

= O

 λ
4

1+α

0

‖(bS)S2‖
2(1−α)
1+α

1

s1
φ2(6, S1)

+ λ
2

1+α

0 ‖(bS)S2‖
2α

1+α

1 + ‖fS − f0‖2n

 .
Remark 4.5. Note that by taking S1 smaller, the value of s1/φ2(6, S1)
will not increase, but on the other hand, the value of ‖(bS)S2‖1 will become
larger. Thus, the best rate will emerge if we trade off these two effects. Indeed,
suppose that for some S1

λ
2

1+α

0

s1
φ2(S1)

� ‖(bS)S2‖
2

1+α

1 .

Then on Tα, for

λ � λ0

(
s21

φ2(6, S1)

)(1−α)/2

� λ
2

1+α

0 ‖(bS)S2‖
− 1−α

1+α

1 ,

we have

‖f̂ − f0‖2n + λ‖β̂ − bS‖1 = O
(
λ2

0

(
s1

φ2(6, S1)

)α
+ ‖fS − f0‖2n

)

= O
(
λ

2
1+α

0 ‖(bS)S2‖
2α

1+α

1 + ‖fS − f0‖2n
)
.

In particular for the case α < 1, it is however not clear when such a trade-
off is possible. It may well be that for any S1, s1/φ2(6, S1) either heavily
dominates or is heavily dominated by the `1-part ‖(bS)S2‖1. See Section 6
for a further discussion.

5. Improving the dual norm bound. In this section, we provide proba-
bility bounds for the set Tα introduced in Section 4. The results follow from
empirical process theory, see e.g. and [14] and [15]. Theorem 5.1 is taken
from [3].

Definition Let F be a class of real-valued functions on X . Endow F with
norm ‖ · ‖n. Let δ > 0 be some radius. A δ-packing set is a set of functions
in F that are each at least δ apart. A δ-covering set is a set of functions
{φ1, . . . , φN}, such that

sup
f∈F

min
k=1,...,N

‖f − φk‖n ≤ δ.
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The δ-covering number N(δ,F , ‖ · ‖n) of F is the minimum size of a δ-
covering set. The entropy of F is H(·,F , ‖ · ‖n) = logN(·,F , ‖ · ‖n).

It is easy to see that N(δ,F , ‖ · ‖n) can be bounded by the size of a maximal
δ-packing set.

We assume the errors are sub-Gaussian, that is, for some positive constants
K and σ0,

(5.1) K2(IE exp[ε2i /K
2]− 1) ≤ σ2

0, i = 1, . . . , n.

The following theorem is Corollary 14.6 in [3]. It is in the spirit of a weighted
concentration inequality, and uses the notation

x+ := max{x, 0}.

Theorem 5.1. Assume (5.1). Let F be a class of functions with ‖f‖n ≤ 1
for all f ∈ F , and with, for some 0 < α < 1 and some constant A,

log
(

1 + 2N(δ,F , ‖ · ‖n)
)
≤
(
A

δ

)2α

, 0 < δ ≤ 1.

Define

B := exp
[

A2αα

2(21−α − 1)2

]
− 1,

and
K0 := 3× 25

√
K2 + σ2

0.

It holds that

IE exp

[
sup
f∈F

[( |εT f |/√n
‖f‖nK0

− Aα‖f‖−αn
21−α − 1

)
+

]2]
≤ 1 + 2/B.

Corollary 5.1. Assume the conditions of Theorem 5.1. Chebyshev’s in-
equality shows that for all t > 0,

IP
(
∃ f ∈ F : |εT f |/

√
n ≥ K0A

α‖f‖1−αn (21−α − 1)−1 +K0‖f‖nt
)

≤ exp[−t2](1 + 2/B).
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Corollary 5.2. Consider now linear functions

fβ :=
p∑
j=1

ψjβj , β ∈ Rp,

where ‖ψj‖n ≤ 1. Then
‖fβ‖n ≤ ‖β‖1.

Hence, {fβ/‖β‖1 : β ∈ Rp} is a class of functions with ‖ · ‖n-norm bounded
by 1. Suppose now

log
(

1 + 2N(δ, {fβ : ‖β‖1 = 1}, ‖ · ‖n)
)
≤
(
A

δ

)2α

, 0 < δ ≤ 1.

Under the sub-Gaussianity condition (5.1), we then have for all t > 0 and
for

λ0 =
4K0√
n

(
Aα

21−α − 1
+ t

)
,

the lower bound
IP(Tα) ≥ 1− exp[−t2](1 + 2/B).

6. Compatibility, eigenvalues, entropy and correlations. We study
the set

F := {fβ : ‖β‖1 = 1}.

It is considered as subset of L2(Qn), where Qn :=
∑n
i=1 δxi/n. The L2(Qn)-

norm is ‖ · ‖n.

6.1. Geometric interpretation of the compatibility constant. We first look
at the minimal `1-eigenvalue

Λ2
min,1(S) := min

{
sβTS Σ̂βS : ‖βS‖1 = 1

}
as introduced in [3]. Note that Λmin,1(S)/

√
s is the minimal distance be-

tween any point fβS with ‖βS‖1 = 1 and the point {0}. We tacitly assume
that the {ψj}j∈S are linearly independent. The set {fβS : ‖βS‖1 = 1}
is then an `1-version of a sphere: it is the boundary of the convex hull of
{ψj}j∈S ∪ {−ψj}j∈S in s-dimensional space with {0} in its “center”. It is a
parallelogram when s = 2 (see Figure 1) and then a rectangle when the ψj ,
j ∈ S, have equal length.
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ψ1

ψ2

A

0

Λmin ,1 (S )

Λmin (S )

ψ1 , . . . , ψ ss

Fig 1. Left panel: the set A = {fβS : ‖βS‖1 = 1}. Right panel: `1- and `2-eigenvalues.

Let Σ̂S be the Gram matrix of the variables in S and Λ2
min(S) be the minimal

(`2-)eigenvalue of the matrix Σ̂S :

Λ2
min(S) := min

{
βTS Σ̂βS : ‖βS‖2 = 1

}
.

Then
Λ2

min,1(S) ≥ Λ2
min(S) ≥ Λ2

min,1(S)/s,

One can construct examples where Λ2
min(S) is as small as 3/(s− 2) ( s > 2)

and Λ2
min,1(S) is at least 1/2 (see [13]), that is, they can differ by the maximal

amount s in order of magnitude. See also Figure 1 which is to be understood
as representing a case s > 2. Thus, minimal `1-eigenvalues can be much
larger than minimal (`2-)eigenvalues. The normalized compatibility constant
φ(L, S)/

√
s is the minimal distance between the sets A := {fβS : ‖βS‖1 = 1}

and B := {fβSc : ‖βSc‖1 ≤ L}, that is,

φ(L, S)√
s

= min
{
‖a− b‖n : a ∈ A, b ∈ B

}
.

See Figure 2 for an impression of the situation. Observe that A is the bound-
ary of the convex hull of {+ψj}j∈S ∪ {−ψj}j∈S , and B is the convex hull of
{+ψj}j∈Sc∪{−ψj}j∈Sc including its interior, blown up with a factor L (typ-
ically, the {ψj}j∈Sc form a linearly dependent system in Rn). Furthermore,
since {0} ∈ B

φ(L, S) ≤ Λmin,1(S).

This shows that when `1-eigenvalues are small, the compatibility constant
is necessarily also small. Small `2-eigenvalues may have less of this effect.

6.2. Eigenvalues and entropy. We now let

Σ̂ = EΩ2ET
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A

B

φ(L,S)/√s

Fig 2. The compatibility constant

be the spectral decomposition of the Gram matrix Σ̂, E being the matrix of
eigenvectors, (ETE = EET = I) and Ω2 = diag(ω2

1, · · · , ω2
p) the matrix of

(`2-)eigenvalues. We assume they are in decreasing order: ω2
1 ≥ · · · ≥ ω2

p.

Lemma 6.1. Suppose that for some strictly decreasing function V

ω2
j+1 ≤ V 2(j), j = 1, . . . , p.

Then for all δ > 0,

H(2δ, {fβ : ‖β‖1 = 1}, ‖ · ‖n) ≤ V −1(δ) log
(

3
δ

)
.

Example 6.1. Suppose that for some positive constants m and C

ωj ≤
C

jm
, j = 1, . . . , p.

Then by Lemma 6.1,

H(2δ, {fβ : ‖β‖1 = 1}, ‖ · ‖n) ≤
(
C

δ

) 1
m

log
(

3
δ

)
.

For δ ≥ 1/n (say) we therefore have

H(δ, {fβ : ‖β‖1 = 1}, ‖ · ‖n) ≤
(

2C
δ

) 1
m

log(6n).

When m > 1/2, one can use a minor generalization of Corollary 5.2, where
the entropy bound is only required for values of δ > 1/n. One then takes

α =
1

2m
, A = (C2

m log(n))
1
2α ,
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where Cm is a constant depending on m and C. Then the value of λ0 defined
there becomes

λ0 =
4K0√
n

(
Cm

√
log(n)

21− 1
2m − 1

+ t

)
which is for fixed m and K0, and a fixed (large) t, of order

√
log n/n.

6.3. Entropy based on coverings of {ψj}. We can consider {fβ : ‖β‖1 = 1}
as a subset of

conv({±ψj}),

where {±ψj} := {ψj} ∪ {−ψj}, and conv({±ψj}) is its convex hull. Infact,
if the {ψj} form a linearly dependent system in Rn, F is exactly equal to
conv({±ψj}).

The paper [7] gives a bound for the entropy of a convex hull for the case
where the u-covering number of the extreme points is a polynomial in 1/u.
This result can also be found in [9]. There is a redundant log-term in these
entropy bounds, see [1] and [15], but removing this log-term may result in
very large constants, depending on the dimension W as given in Example 6.2
(see [3] for some explicit constants). This means that when the dimension
W of the extreme points is large (growing with n say), the simple bound
with log-term we provide below in Lemma 6.2 may be better than the more
involved ones.

We give a bound for the entropy of F by balancing the u-covering number
of {ψj} and the squared radius u2. The result is as in [9], with only new
element its extension to general covering numbers (i.e., not only polynomial
ones). Lemma 6.2 and its proof can be found in [3].

Lemma 6.2. Let

N(u) := N(u, {ψj}, ‖ · ‖n), u > 0.

We have

H

(
δ, {fβ : ‖β‖1 = 1}, ‖ · ‖n

)

≤ min
0<u<1

6

(
N(u) +

6u2

δ2

)
log
(

2
(

8 + δ

δ

)
N(δ)

)
.

Example 6.2. In this example, we assume the u-covering numbers of {ψj}
are bounded by a polynomial in u. That is, we suppose that for some positive
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constants W and C,

N(u, {ψj}, ‖ · ‖n) ≤
(
C

u

)W
, u > 0.

The constant W can be thought of as the dimension of {ψj}. By Lemma 6.2,
we can choose

α =
W

2 +W
, A = (C2

W log(n))
1
2α ,

and we get, as in Example 6.1,

λ0 =
4K0√
n

(
CW

√
log(n)

2
2

2+W − 1
+ t

)
.

A refined analysis of the relation between compatibility constants, covering
numbers and entropy is still to be carried out. We confine ourselves here to
the following, rather trivial, observation (without proof).

Lemma 6.3. Consider normalized design: ‖ψj‖n = 1 ∀ j. Let {ψj1 , . . . , ψjN }
be a maximal u-packing set of {ψj}. Then for any S ⊃ {j1, . . . , jN}, S 6=
{1, . . . , p}, and any L ≥ 1,

φ2(L, S) ≤ su2.

One may argue that as u-packing sets are approximations of the original
design {ψj} with fewer covariables, they are good candidates for the sparsity
set S1 used in Theorem 4.1. Lemma 6.3 however shows that such sparsity
sets will have very small compatibility constants.

6.4. Decorrelation numbers. Decorrelation numbers are closely related to
packing numbers. First, define the inner product

ρ(φ, φ̃) := φT φ̃/n.

Note that Σj,k = ρ(ψj , ψk) and that in the case of standardized design (i.e.∑n
i=1 ψj(xi) = 0 and ‖ψj‖n = 1 ∀ j), the inner product ρ(ψj , ψk) is for j 6= k

the (empirical) correlation between ψj and ψk.

Definition For ρ > 0, the ρ-decorrelation number M(ρ) is the largest value
of M such that there exists {φ1, . . . , φM} ⊂ {±ψj} with |ρ(φj , φk)| < ρ for
all j 6= k.
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Hence, if the ρ-decorrelation number is small, then there are many large
correlations, i.e., then the design is highly correlated.

It is clear that when ‖ψj‖n = ‖ψk‖n = 1, it holds that

‖ψj − ψk‖2n = 2(1− ρ(ψj , ψk)).

In other words, small correlations correspond to covariables that are near to
each other. This can be translated into covering number as shown in Lemma
6.4. Its proof is straightforward and omitted.

Lemma 6.4. Consider normalized design: ‖ψj‖n = 1 ∀ j. For all 0 < u < 1,

N(
√

2u, {±ψj}, ‖ · ‖n) ≤M(1− u2).

7. Conclusion. We have combined results for the prediction error of the
Lasso with both compatibility conditions and entropy conditions. Small en-
tropies of {fβ : ‖β‖1 = 1} correspond to highly correlated design and
possibly to small compatibility constants. Our analysis shows that small en-
tropies allow for a smaller choice of the tuning parameter and possibly for a
compensation of small compatibility constants. This means that the Lasso
enjoys good prediction error properties, even in the case where the design is
highly correlated.

8. Proofs.

Proof of Lemma 4.1. We use that for positive u and v and for p ≥ 1,
q ≥ 1, 1/p + 1/q = 1, the conjugate inequality

uv ≤ up/p + vq/q

holds. Taking p = 1/(1− α) and replacing u by u1−α gives

u1−αv ≤ 1− α
2

u2 +
1 + α

2
v

2
1+α .

With p = (1 + α)/(2α), and replacing u by u
2α

1+α , we get

u
2α

1+α v ≤ 2α
1 + α

u+
1− α
1 + α

v
1+α
1−α .

Thus,

λ0a
1−αbα ≤ 1− α

2
a2 +

1 + α

2

(
λ0b

α
) 2

1+α
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≤ a2

2
+

1 + α

2
(λb)

2α
1+α

(
λ0

λα

) 2
1+α

≤ a2

2
+

1 + α

2

 2α
1 + α

λb+
1− α
1 + α

(
λ0

λα

) 2
1−α


≤ a2

2
+ λb+

1
2

(
λ0

λα

) 2
1−α

.

tu

Proof of Theorem 4.1. Since

‖Y − f̂‖22/n+ λ‖β̂‖1 ≤ ‖Y − fS‖22/n+ λ‖bS‖1,

we have the Basic Inequality

‖f̂ − f0‖2n + λ‖β̂‖1 ≤ 2εT (f̂ − fS)/n+ λ‖bS‖1 + ‖fS − f0‖2n.

Hence, on Tα,

‖f̂ − f0‖2n + λ‖β̂‖1 ≤ λ0‖f̂ − fS‖1−αn ‖β̂ − bS‖α1 /2 + λ‖bS‖1 + ‖fS − f0‖2n.

Apply Lemma 4.1 to find

‖f̂ − f0‖2n + λ‖β̂‖1

≤ 1
4
‖f̂ − fS‖2n +

1
2
λ‖β̂ − bS‖1 +

1
4

(
λ0

λα

) 2
1−α

+ λ‖bS‖1 + ‖fS − f0‖2n.

≤ 1
2
‖f̂ − f0‖2n +

1
2
λ‖β̂ − bS‖1 +

1
4

(
λ0

λα

) 2
1−α

+ λ‖bS‖1 +
3
2
‖fS − f0‖2n.

Thus, we get on Tα,

‖f̂ − f0‖2n + 2λ‖β̂‖1 ≤ λ‖β̂ − bS‖1 + 2λ‖bS‖1 +
1
2

(
λ0

λα

) 2
1−α

+ 3‖fS − f0‖2n.

Defining S3 := Sc, we rewrite this to

‖f̂ − f0‖2n + 2λ‖β̂S2∪S3‖1

≤ λ‖β̂S1 − (bS)S1‖1 + λ‖β̂S2 − (bS)S2‖1 + λ‖β̂S3‖1 + 2λ‖(bS)S1‖1− 2λ‖β̂S1‖1

+2λ‖(bS)S2‖1 +
1
2

(
λ0

λα

) 2
1−α

+ 3‖fS − f0‖2n
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≤ 3λ‖β̂S1−(bS)S1‖1 +λ‖β̂S2∪S3‖1 +3λ‖(bS)S2‖1 +
1
2

(
λ0

λα

) 2
1−α

+3‖fS−f0‖2n.

Moving the term λ‖β̂S2∪S3‖1 to the left hand side, and applying a triangle
inequality, we obtain

‖f̂ − f0‖2n + λ‖β̂S2∪S3 − (bS)S2‖1

≤ 3λ‖β̂S1 − (bS)S1‖1︸ ︷︷ ︸
:=I

+ 4λ‖(bS)S2‖1 +
1
2

(
λ0

λα

) 2
1−α

+ 3‖fS − f0‖2n︸ ︷︷ ︸
:=II

.

Case i. If I ≥ II, we arrive at

‖f̂ − f0‖2n + λ‖β̂S2∪S3 − (bS)S2‖1 ≤ 6λ‖β̂S1 − (bS)S1‖1.

We first add add a term λ‖β̂S1 − (bS)S1‖1 to the left and right hand side
and then apply the compatibility condition to β̂ − bS , to get

‖f̂ − f0‖2n + λ‖β̂ − bS‖1 ≤
7λ
√
s1

φ(6, S1)
‖f̂ − fS‖n

≤ 1
2
‖f̂ − f0‖2n +

7
2
‖fS − f0‖2n +

56λ2s1
2φ2(6, S1)

.

Here we used the decoupling device

2xy ≤ bx2 + y2/b ∀ x, y ∈ R, b > 0.

So then

‖f̂ − f0‖2n + 2λ‖β̂ − bS‖1 ≤
56λ2s1
φ2(6, S1)

+ 7‖fS − f0‖2n.

Case ii. If I < II, we get

‖f̂ − f0‖2n + λ‖β̂S2∪S3 − (bS)S2‖1 ≤ 2II,

and hence
‖f̂ − f0‖2n + λ‖β̂ − bS‖1 ≤

7
3
II

=
28
3
λ‖(bS)S2‖1 +

7
6

(
λ0

λα

) 2
1−α

+ 7‖fS − f0‖2n.

tu
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Proof of Lemma 6.1. Let ‖β‖1 = 1. Then ‖β‖2 ≤ 1, and hence ‖ETβ‖2 ≤
1. For N ≤ V −1(δ) it holds that ωN+1 ≤ δ and hence

p∑
j=N+1

ω2
j (E

Tβ)2j ≤ ω2
N+1

p∑
j=N+1

(ETβ)2j ≤ δ2.

We now note that ‖β‖1 = 1 implies ‖fβ‖n ≤ 1 and hence

N∑
j=1

ω2
j (E

Tβ)2j ≤ 1.

Lemma 14.27 in [3] states that a ball with radius 1 in N -dimensional Eu-
clidean space can be covered by (3/δ)N balls with radius δ (see also Problem
2.1.6 in [15]). tu
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