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Preface

This preface motivates why, from a statistician’s point of view, it is interesting to study empirical
processes. We indicate that any estimator is some function of the empirical measure. In these lectures,
we study convergence of the empirical measure, as sample size increases.

In the simplest case, a data set consists of observations on a single variable, say real-valued observations.
Suppose there are n such observations, denoted by X1, . . . , Xn. For example, Xi could be the reaction
time of individual i to a given stimulus, or the number of car accidents on day i, etc. Suppose now that
each observation follows the same probability law P . This means that the observations are relevant if
one wants to predict the value of a new observation X say (the reaction time of a hypothetical new
subject, or the number of car accidents on a future day, etc.). Thus, a common underlying distribution
P allows one to generalize the outcomes.

An estimator is any given function Tn(X1, . . . , Xn) of the data. Let us review some common estima-
tors.

The empirical distribution. The unknown P can be estimated from the data in the following way.
Suppose first that we are interested in the probability that an observation falls in A, where A is a certain
set chosen by the researcher. We denote this probability by P (A). Now, from the frequentist point of
view, the probability of an event is nothing else than the limit of relative frequencies of occurrences of
that event as the number of occasions of possible occurrences n grows without limit. So it is natural to
estimate P (A) with the frequency of A, i.e, with

Pn(A) =
number of times an observation Xi falls in A

total number of observations

=
number of Xi ∈ A

n
.

We now define the empirical measure Pn as the probability law that assigns to a set A the probability
Pn(A). We regard Pn as an estimator of the unknown P .

The empirical distribution function. The distribution function of X is defined as

F (x) = P (X ≤ x),

and the empirical distribution function is

F̂n(x) =
number of Xi ≤ x

n
.
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Figure 1
Figure 1 plots the distribution function F (x) = 1 − 1/x2, x ≥ 1 (smooth curve) and the empirical

distribution function F̂n (stair function) of a sample from F with sample size n = 200.
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Means and averages. The theoretical mean

µ := E(X)

(E stands for Expectation), can be estimated by the sample average

X̄n :=
X1 + . . .+Xn

n
.

More generally, let g be a real-valued function on R. Then

g(X1) + . . .+ g(Xn)
n

,

is an estimator Eg(X).

Sample median. The median of X is the value m that satisfies F (m) = 1/2 (assuming there is a
unique solution). Its empirical version is any value m̂n such that F̂n(m̂n) is equal or as close as possible
to 1/2. In the above example F (x) = 1 − 1/x2, so that the theoretical median is m =

√
2 = 1.4142.

In the ordered sample, the 100th observation is equal to 1.4166 and the 101th observation is equal to
1.4191. A common choice for the sample median is taking the average of these two values. This gives
m̂n = 1.4179.

Properties of estimators. Let Tn = Tn(X1, . . . , Xn) be an estimator of the real-valued parameter
θ. Then it is desirable that Tn is in some sense close to θ. A minimum requirement is that the estimator
approaches θ as the sample size increases. This is called consistency. To be more precise, suppose the
sample X1, . . . , Xn are the first n of an infinite sequence X1, X2, . . . of independent copies of X. Then
Tn is called strongly consistent if, with probability one,

Tn → θ as n→∞.

Note that consistency of frequencies as estimators of probabilities, or means as estimators of expectations,
follows from the (strong) law of large numbers. In general, an estimator Tn can be a complicated function
of the data. In that case, it is helpful to know that the convergence of means to their expectations is
uniform over a class. The latter is a major topic in empirical process theory.

Parametric models. The distribution P may be partly known beforehand. The unknown parts of
P are called parameters of the model. For example, if the Xi are yes/no answers to a certain question
(the binary case), we know that P allows only two possibilities, say 1 and 0 (yes=1, no=0). There is
only one parameter , say the probability of a yes answer θ = P (X = 1). More generally, in a parametric
model, it is assumed that P is known up to a finite number of parameters θ = (θ1, · · · , θd). We then
often write P = Pθ. When there are infinitely many parameters (which is for example the case when P
is completely unknown), the model is called nonparametric.

Nonparametric models.
An example of a nonparametric model is where one assumes that the density f of the distribution

function F exists, but all one assumes about it is some kind of “smoothness” (e.g. the continuous first
derivative of f exists). In that case, one may propose e.g. to use the histogram as estimator of f . This
is an example of a nonparametric estimator.

Histograms. Our aim is estimating the density f(x) at a given point x. The density is defined as
the derivative of the distribution function F at x:

f(x) = lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

P (x, x+ h]
h

.

Here, (x, x + h] is the interval with left endpoint x (not included) and right endpoint x + h (included).
Unfortunately, replacing P by Pn here does not work, as for h small enough, Pn(x, x+ h] will be equal
to zero. Therefore, instead of taking the limit as h → 0, we fix h at a (small) positive value, called the
bandwidth. The estimator of f(x) thus becomes

f̂n(x) =
Pn(x, x+ h]

h
=

number of Xi ∈ (x, x+ h]
nh

.
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A plot of this estimator at points x ∈ {x0, x0 + h, x0 + 2h, . . .} is called a histogram.

Example . Figure 2 shows the histogram, with bandwidth h = 0.5, for the sample of size n = 200
from the Pareto distribution with parameter θ = 2. The solid line is the density of this distribution.
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Conclusion. An estimator Tn is some function of the data X1, . . . , Xn. If it is a symmetric function

of the data (which we can in fact assume without loss of generality when the ordering in the data
contains no information), we may write Tn = T (Pn), where Pn is the empirical distribution. Roughly
speaking, the main purpose in theoretical statistics is studying the difference between T (Pn) and T (P ).
We therefore are interested in convergence of Pn to P in a broad enough sense. This is what empirical
process theory is about.
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1. Introduction.

This chapter introduces the notation and (part of the) problem setting.

Let X1, . . . , Xn, . . . be i.i.d. copies of a random variable X with values in X and with distribution P .
The distribution of the sequence X1, X2, . . . (+ perhaps some auxiliary variables) is denoted by P.

Definition. Let {Tn, T} be a collection of real-valued random variables. Then Tn converges in
probability to T , if for all ε > 0,

lim
n→∞

P(|Tn − T | > ε) = 0.

Notation: Tn →P T .
Moreover, Tn converges almost surely (a.s.) to T if

P( lim
n→∞

Tn = T ) = 1.

Remark. Convergence almost surely implies convergence in probability.

1.1. Law of large numbers for real-valued random variables. Consider the case X = R.
Suppose the mean

µ := EX

exists. Define the average

X̄n :=
1
n

n∑
i=1

Xi, n ≥ 1

Then, by the law of large numbers, as n→∞,

X̄n → µ, a.s.

Now, let
F (t) := P (X ≤ t), t ∈ R,

be the theoretical distribution function, and

Fn(t) :=
1
n

#{Xi ≤ t, 1 ≤ i ≤ n}, t ∈ R,

be the empirical distribution function. Then by the law of large numbers, as n→∞,

Fn(t) → F (t), a.s. for all t.

We will prove (in Chapter 4) the Glivenko-Cantelli Theorem, which says that

sup
t
|Fn(t)− F (t)| → 0, a.s.

This is a uniform law of large numbers.

Application: Kolmogorov’s goodness-of-fit test. We want to test
H0 : F = F0.
Test statistic:

Dn; = sup
t
|Fn(t)− F0(t)|.

Reject H0 for large values of Dn.

1.2. Rd-valued random variables. Questions:
(i) What is a natural extension of half-intervals in R to higher dimensions?
(ii) Does Glivenko-Cantelli hold for this extension?
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1.3. Definition Glivenko-Cantelli classes of sets. Let for any (measurable1) A ⊂ X ,

Pn(A) :=
1
n

#{Xi ∈ A, 1 ≤ i ≤ n}.

We call Pn the empirical measure (based on X1, . . . , Xn).

Let D be a collection of subsets of X .

Definition 1.3.1. The collection D is called a Glivenko-Cantelli (GC) class if

sup
D∈D

|Pn(D)− P (D)| → 0, a.s.

Example. Let X = R. The class of half-intervals

D = {l(−∞,t] : t ∈ R}

is GC. But when e.g. P = uniform distribution on [0, 1] (i.e., F (t) = t, 0 ≤ t ≤ 1), the class

B = {all (Borel) subsets of [0, 1]}

is not GC.

1.4. Convergence of averages to their expectations.

Notation. For a function g : X → R, we write

P (g) := Eg(X),

and

Pn(g) :=
1
n

n∑
i=1

g(Xi).

Let G be a collection of real-valued functions on X .

Definition 1.4.1. The class G is called a Glivenko-Cantelli (GC) class if

sup
g∈G

|Pn(g)− P (g)| → 0, a.s.

We will often use the notation

‖Pn − P‖G := sup
g∈G

|Pn(g)− P (g)|.

1We will skip measurability issues, and most of the time do not mention explicitly the requirement of measurability of
certain sets or functions. This means that everything has to be understood modulo measurability.
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2. (Exponential) probability inequalities

A statistician is almost never sure about something, but often says that something holds “with large
probability”. We study probability inequalities for deviations of means from their expectations. These are
exponential inequalities, that is, the probability that the deviation is large is exponentially small. ( We
will in fact see that the inequalities are similar to those obtained if we assume normality.) Exponentially
small probabilities are useful indeed when one wants to prove that with large probability a whole collection
of events holds simultaneously. It then suffices to show that adding up the small probabilities that one
such an event does not hold, still gives something small. We will use this argument in Chapter 4.

2.1. Chebyshev’s inequality.

Chebyshev’s inequality. Consider a random variable X ∈ R with distribution P , and an increasing
function φ : R → [0,∞). Then for all a with φ(a) > 0, we have

P (X ≥ a) ≤ Eφ(X)
φ(a)

.

Proof.
Eφ(X) =

∫
φ(x)dP (x) =

∫
X≥a

φ(x)dP (x) +
∫

X<a

φ(x)dP (x)

≥
∫

X≥a

φ(x)dP (x) ≥
∫

X≥a

φ(a)dP (x)

= φ(a)
∫

X≥a

dP = φ(a)P (X ≥ a).

tu

Let X be N (0, 1)-distributed. By Exercise 2.4.1,

P (X ≥ a) ≤ exp[−a2/2] ∀ a > 0.

Corollary 2.1.1. Let X1, . . . , Xn be independent real-valued random variables, and suppose, for all
i, that Xi is N (0, σ2

i )-distributed. Define

b2 =
n∑

i=1

σ2
i .

Then for all a > 0,

P

(
n∑

i=1

Xi ≥ a

)
≤ exp

[
− a2

2b2

]
.

2.2. Bernstein’s inequality.

Bernstein’s inequality. Let X1, . . . , Xn be independent real-valued random variables with expecta-
tion zero. Suppose that for all i,

E|Xi|m ≤ m!
2
Km−2σ2

i , m = 2, 3, . . . .

Define

b2 =
n∑

i=1

σ2
i .

We have for any a > 0,

P

(
n∑

i=1

Xi ≥ a

)
≤ exp

[
− a2

2(aK + b2)

]
.
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Proof. We have for 0 < λ < 1/K,

E exp[λXi] = 1 +
∞∑

m=2

1
m!
λmEXm

i

≤ 1 +
∞∑

m=2

λ2

2
(λK)m−2σ2

i

= 1 +
λ2σ2

i

2(1− λK)

≤ exp
[

λ2σ2
i

2(1− λK)

]
.

It follows that

E exp

[
λ

n∑
i=1

Xi

]
=

n∏
i=1

E exp[λXi]

≤ exp
[

λ2b2

2(1− λK)

]
.

Now, apply Chebyshev’s inequality to
∑n

i=1Xi, and with φ(x) = exp[λx], x ∈ R. We arrive at

P

(
n∑

i=1

Xi ≥ a

)
≤ exp

[
λ2b2

2(1− λK)
− λa

]
.

Take
λ =

a

Ka+ b2

to complete the proof.
tu

2.3. Hoeffding’s inequality.

Hoeffding’s inequality. Let X1, . . . , Xn be independent real-valued random variables with expecta-
tion zero. Suppose that for all i, and for certain constants ci > 0,

|Xi| ≤ ci.

Then for all a > 0,

P

(
n∑

i=1

Xi ≥ a

)
≤ exp

[
− a2

2
∑n

i=1 c
2
i

]
.

Proof. Let λ > 0. By the convexity of the exponential function exp[λx], we know that for any
0 ≤ α ≤ 1,

exp[αλx+ (1− α)λy] ≤ α exp[λx] + (1− α) exp[λy].

Define now
αi =

ci −Xi

2ci
.

Then
Xi = αi(−ci) + (1− αi)ci,

so
exp[λXi] ≤ αi exp[−λci] + (1− αi) exp[λci].

But then, since Eαi = 1/2, we find

E exp[λXi] ≤
1
2

exp[−λci] +
1
2

exp[λci].
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Now, for all x,

exp[−x] + exp[x] = 2
∞∑

k=0

x2k

(2k)!
,

whereas

exp[x2/2] =
∞∑

k=0

x2k

2kk!
.

Since
(2k)! ≥ 2kk!,

we thus know that
exp[−x] + exp[x] ≤ 2 exp[x2/2],

and hence
E exp[λXi] ≤ exp[λ2c2i /2].

Therefore,

E exp

[
λ

n∑
i=1

Xi

]
≤ exp

[
λ2

n∑
i=1

c2i /2

]
.

It follows now from Chebyshev’s inequality that

P

(
n∑

i=1

Xi ≥ a

)
≤ exp

[
λ2

n∑
i=1

c2i /2− λa

]
.

Take λ = a/(
∑n

i=1 c
2
i ) to complete the proof.

tu

2.4. Exercise.

Exercise 1.
Let X be N (0, 1)-distributed. Show that for λ > 0,

E exp[λX] = exp[λ2/2].

Conclude that for all a > 0,
P (X ≥ a) ≤ exp[λ2/2− λa].

Take λ = a to find the inequality
P (X ≥ a) ≤ exp[−a2/2].
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3. Symmetrization

Symmetrization is a technique based on the following idea. Suppose you have some estimation method,
and want to know how good it performs. Suppose you have a sample of size n, the so-called training set
and a second sample, say also of size n, the so-called test set. Then we may use the training set to
calculate the estimator, and the test set to check its performance. For example, suppose we want to
know how large the maximal deviation is between certain averages and expectations. We cannot calculate
this maximal deviation directly, as the expectations are unknown. Instead, we can calculate the maximal
deviation between the averages in the two samples. Symmetrization is closely rerlated: it splits the sample
of size n randomly in two subsamples.

Let X ∈ X be a random variable with distribution P . We consider two independent sets of indepen-
dent copies of X, X := X1, . . . , Xn and X′ := X ′

1, . . . , X
′
n.

Let G be a class of real-valued functions on X . Consider the empirical measures

Pn :=
1
n

n∑
i=1

δXi , P
′
n :=

1
n

n∑
i=1

δXi .

Here δx denotes a point mass at x. Define

‖Pn − P‖G := sup
g∈G

|Pn(g)− P (g)|,

and likewise
‖P ′n − P‖G := sup

g∈G
|P ′n(g)− P (g)|,

and
‖Pn − P ′n‖G := sup

g∈G
|Pn(g)− P ′n(g)|.

3.1. Symmetrization with means.

Lemma 3.1.1. We have
E‖Pn − P‖G ≤ E‖Pn − P ′n‖G .

Proof. For a function f on X 2n, let EXf(X,X′) denote the conditional expectation of f(X,X′)
given X. Then obviously,

EXPn(g) = Pn(g)

and
EXP

′
n(g) = P (g).

So
(Pn − P )(g) = EX(Pn − P ′n)(g).

Hence
‖Pn − P‖G = sup

g∈G
|Pn(g)− P (g)| = sup

g∈G
|EX(Pn − P ′n)(g)|.

Now, use that for any function f(Z, t) depending on a random variable Z and a parameter t, we have

sup
t
|Ef(Z, t)| ≤ sup

t
E|f(Z, t)| ≤ E sup

t
|f(Z, t)|.

So
sup
g∈G

|EX(Pn − P ′n)(g)| ≤ EX‖Pn − P ′n‖G .

So we now showed that
‖Pn − P‖G ≤ EX‖Pn − P ′n‖G .

Finally, we use that the expectation of the conditional expectation is the unconditional expectation:

EEXf(X,X′) = Ef(X,X).
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So
E‖Pn − P‖G ≤ EEX‖Pn − P ′n‖G = E‖Pn − P ′n‖G .

tu

Definition 3.1.2. A Rademacher sequence {σi}n
i=1 is a sequence of independent random variables

σi, with

P(σi = 1) = P(σi = −1) =
1
2
∀ i.

Let {σi}n
i=1 be a Rademacher sequence, independent of the two samples X and X′. We define the

symmetrized empirical measure

Pσ
n (g) :=

1
n

n∑
i=1

σig(Xi), g ∈ G.

Let
‖Pσ

n ‖G = sup
g∈G

|Pσ
n (g)|.

Lemma 3.1.3. We have
E‖Pn − P‖G ≤ 2E‖Pσ

n ‖G .

Proof. Consider the symmetrized version of the second sample X′:

P ′,σn (g) =
1
n

n∑
i=1

σig(X ′
i).

Then ‖Pn − P ′n‖G has the same distribution as ‖Pσ
n − P ′,σn ‖G . So

E‖Pn − P ′n‖G = E‖Pσ
n − P ′,σn ‖G

≤ E‖Pσ
n ‖G + E‖P ′,σn ‖G = 2E‖Pσ

n ‖G .

tu

3.2. Symmetrization with probabilities.

Lemma 3.2.1. Let δ > 0. Suppose that for all g ∈ G,

P (|Pn(g)− P (g)| > δ/2) ≤ 1
2
.

Then

P (‖Pn − P‖G > δ) ≤ 2P
(
‖Pn − P ′n‖G >

δ

2

)
.

Proof. Let PX denote the conditional probability given X. If ‖Pn − P‖G > δ, we know that for
some random function g∗ = g∗(X) depending on X,

|Pn(g∗)− P (g∗)| > δ.

Because X′ is independent of X, we also know that

PX (|P ′n(g∗)− P (g∗)| > δ/2) ≤ 1
2
.

Thus,

P
(
|Pn(g∗)− P (g∗)| > δ and |P ′n(g∗)− P (g∗)| ≤

δ

2

)
= EPX

(
|Pn(g∗)− P (g∗)| > δ and |P ′n(g∗)− P (g∗)| ≤

δ

2

)
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= EPX

(
|P ′n(g∗)− P )(g∗)| ≤

δ

2

)
l{|Pn(g∗)− P (g∗)| > δ}

≥ 1
2
El{(|Pn(g∗)− P (g∗)| > δ}

=
1
2
P (|Pn(g∗)− P (g∗)| > δ) .

It follows that
P (‖Pn − P‖G > δ) ≤ P (|Pn(g∗)− P (g∗)| > δ)

≤ 2P
(
|Pn(g∗)− P (g∗)| > δ and |P ′n(g∗)− P (g∗)| ≤

δ

2

)
≤ 2P

(
|Pn(g∗)− P ′n(g∗)| >

δ

2

)
tu

Corollary 3.2.2. Let δ > 0. Suppose that for all g ∈ G,

P (|Pn(g)− P (g)| > δ/2) ≤ 1
2
.

Then

P (‖Pn − P‖G > δ) ≤ 4P
(
‖Pσ

n ‖G >
δ

4

)
.

3.3. Some facts about conditional expectations.
Let X and Y be two random variables. We write the conditional expectation of Y given X as

EX(Y ) = E(Y |X).

Then
E(Y ) = E(EX(Y ).

Let f be some function of X and g be some function of (X,Y ). We have

EX(f(X)g(X,Y )) = f(X)EXg(X,Y ).

The conditional probability given X is

PX((X,Y ) ∈ B) = EX lB(X,Y ).

Hence,
PX(X ∈ X, (X,Y ) ∈ B) = lA(X)PX((X,Y ) ∈ B).
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4. Uniform laws of large numbers.

In this chapter, we prove uniform laws of large numbers for the empirical mean of functions g of the
individual observations, when g varies over a class G of functions. First, we study the case where G is
finite. Symmetrization is used in order to be able to apply Hoeffding’s inequality. Hoeffding’s inequality
gives exponential small probabilities for the deviation of averages from their expectations. So considering
only a finite number of such averages, the difference between these averages and their expectations will
be small for all averages simultaneously, with large probability.

If G is not finite, we approximate it by a finite set. A δ-approximation is called a δ-covering, and the
number of elements of a δ-covering is called the δ-covering number.

We introduce Vapnik Chervonenkis (VC) classes. These are classes with small covering numbers.

Let X ∈ X be a random variable with distribution P . Consider a class G of real-valued functions
on X , and consider i.i.d. copies {X1, X2, . . .} of X. In this chapter, we address the problem of proving
‖Pn − P‖G →P 0. If this is the case, we call G a Glivenko Cantelli (GC) class.

Remark. It can be shown that if ‖Pn − P‖G →P 0, then also ‖Pn − P‖G → 0 almost surely. This
involves e.g. martingale arguments. We will not consider this issue.

4.1. Classes of functions.
Notation. The sup-norm of a function g is

‖g‖∞ := sup
x∈X

|g(x)|.

Elementary observation. Let {Ak}N
k=1 be a finite collection of events. Then

P
(
∪N

k=1Ak

)
≤

N∑
k=1

P(Ak) ≤ N max
1≤k≤N

P(A).

Lemma 4.1.1. Let G be a finite class of functions, with cardinality |G| := N > 1. Suppose that for
some finite constant K,

max
g∈G

‖g‖∞ ≤ K.

Then for all

δ ≥ 2K

√
logN
n

,

we have

P (‖Pσ
n ‖G > δ) ≤ 2 exp

[
− nδ2

4K2

]
and

P (‖Pn − P‖G > 4δ) ≤ 8 exp
[
− nδ2

4K2

]
.

Proof.
• By Hoeffding’s inequality, for each g ∈ G,

P (|Pσ
n (g)| > δ) ≤ 2 exp

[
− nδ2

2K2

]
.

• Use the elementary observation to conclude that

P (‖Pσ
n ‖G > δ) ≤ 2N exp

[
− nδ2

2K2

]

= 2 exp
[
logN − nδ2

2K2

]
≤ 2 exp

[
− nδ2

4K2

]
.
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• By Chebyshev’s inequality, for each g ∈ G

P (|Pn(g)− P (g)| > δ) ≤ var(g(X))
nδ2

≤ K2

nδ2

≤ K2

4K2 logN
≤ 1

2
.

• Hence, by symmetrization with probabilities

P (‖Pn − P‖G > 4δ) ≤ 4P (‖Pσ
n ‖G > δ) ≤ 8 exp

[
− nδ2

4K2

]
.

tu

Definition 4.1.2. The envelope G of a collection of functions G is defined by

G(x) = sup
g∈G

|g(x)|, x ∈ X .

In Exercise 2 of this chapter, the assumption supg∈G ‖g‖∞ ≤ K used in Lemma 4.1.1, is weakened to
P (G) <∞.

Definition 4.1.3. Let S be some subset of a metric space (Λ, d). For δ > 0, the δ-covering number
N(δ, S, d) of S is the minumum number of balls with radius δ, necessary to cover S, i.e. the smallest
value of N , such that there exist s1, . . . , sN in Λ with

min
j=1,...,N

d(s, sj) ≤ δ, ∀ s ∈ S.

The set s1, . . . , sN is then called a δ-covering of S. The logarithm logN(·, S, d) of the covering number
is called the entropy of S.

Figure 3

Notation. Let
d1,n(g, g̃) = Pn(|g − g̃|).

Theorem 4.1.4. Suppose
‖g‖∞ ≤ K, ∀ g ∈ G.

Assume moreover that
1
n

logN(δ,G, d1,n) →P 0.

Then
‖Pn − P‖G →P 0.

15



Proof. Let δ > 0. Let g1, . . . , gN , with N = N(δ,G, d1,n), be a δ-covering of G.
• When Pn(|g − gj |) ≤ δ, we have

|Pσ
n (g)| ≤ |Pσ

n (gj)|+ δ.

So
‖Pσ

n ‖G ≤ max
j=1,...N

|Pσ
n (gj)|+ δ.

• By Hoeffding’s inequality and the elementary observation, for

δ ≥ 2K

√
logN
n

,

we have

PX

(
max

j=1,...,N
|Pσ

n (gj)| > δ

)
≤ 2 exp

[
− nδ2

4K2

]
.

• Conclude that for

δ ≥ 2K

√
logN
n

,

we have

PX (‖Pσ
n ‖G > 2δ) ≤ 2 exp

[
− nδ2

4K2

]
.

• But then

P (‖Pσ
n ‖G > 2δ) ≤ 2 exp

[
− nδ2

4K2

]
+ P

(
2K

√
logN(δ,G, d1,n)

n
> δ

)
.

• We thus get as n→∞,
P (‖Pσ

n ‖G > 2δ) → 0.

• No, use the symmetrization with probabilities to conclude

P (‖Pn − P‖G > 8δ) → 0.

Since δ is arbitrary, this concludes the proof.
tu

Again, the assumption supg∈G ‖g‖∞ ≤ K used in Theorem 4.1.4, can be weakened to P (G) <∞ (G
being the envelope of G). See Exercise 3 of this chapter.

4.2. Classes of sets. Let D be a collection of subsets of X , and let {ξ1, . . . , ξn} be n points in X .

Definition 4.2.1. We write
4D(ξ1, . . . , ξn) = card({D ∩ {ξ1, . . . , ξn} : D ∈ D}

= the number of subsets of {ξ1, . . . , ξn} that D can distinguish.
That is, count the number of sets in D, when two sets D1 and D2 are considered as equal if D14D2 ∩
{ξ1, . . . , ξn} = ∅. Here

D14D2 = (D1 ∩Dc
2) ∪ (Dc

1 ∩D2)

is the symmetric difference between D1 and D2.

Remark. For our purposes, we will not need to calculate 4D(ξ1, . . . , ξn) exactly, but only a good
enough upper bound.

Example. Let X = R and
D = {l(−∞,t] : t ∈ R}.

Then for all {ξ1, . . . , ξn} ⊂ R
4D(ξ1, . . . , ξn) ≤ n+ 1.
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Example. Let D be the collection of all finite subsets of X . Then, if the points ξ1, . . . , ξn are distinct,

4D(ξ1, . . . , ξn) = 2n.

Theorem 4.2.2. (Vapnik and Chervonenkis (1971)). We have

1
n

log ∆D(X1, . . . , Xn) →P 0,

if and only if
sup
D∈D

|Pn(D)− P (D)| →P 0.

Proof of the if-part. This follows from applying Theorem 4.1.4 to G = {lD : D ∈ D}. Note that a
class of indicator functions is uniformly bounded by 1, i.e. we can take K = 1 in Theorem 4.1.4. Define
now

d∞,n(g, g̃) = max
i=1,...,n

|g(Xi)− g̃(Xi)|.

Then d1,n ≤ d∞,n, so also
N(·,G, d1,n) ≤ N(·,G, d∞,n).

But for 0 < δ < 1,
N(δ, {lD : D ∈ D}, d∞,n) = ∆D(X1, . . . , Xn).

So indeed, if 1
n log ∆D(X1, . . . , Xn) →P 0, then also 1

n logN(δ, {lD : D ∈ D}, d1,n) ≤ 1
n log ∆D(X1, . . . , Xn)

→P 0.
tu

4.3. Vapnik-Chervonenkis classes.

Definition 4.3.1. Let

mD(n) = sup{4D(ξ1, . . . , ξn) : ξ1, . . . , ξn ∈ X}.

We say that D is a Vapnik-Chervonenkis (VC) class if for certain constants c and V , and for all n,

mD(n) ≤ cnV ,

i.e., if mD(n) does not grow faster than a polynomial in n.

Important conclusion: For sets, VC ⇒ GC.

Examples.
a) X = R, D = {l(−∞,t] : t ∈ R}. Since mD(n) ≤ n+ 1, D is VC.
b) X = Rd, D = {l(−∞,t] : t ∈ Rd}. Since mD(n) ≤ (n+ 1)d, D is VC.

c) X = Rd, D = {{x : θTx > t},
(
θ
t

)
∈ Rd+1}. Since mD(n) ≤ 2d

(
n
d

)
, D is VC.

The VC property is closed under measure theoretic operations:

Lemma 4.3.2. Let D, D1 and D2 be VC. Then the following classes are also VC:
(i) Dc = {Dc : D ∈ D},
(ii) D1 ∩ D2 = {D1 ∩D2 : D1 ∈ D1, D2 ∈ D2},
(iii) D1 ∪ D2 = {D1 ∩D2 : D1 ∈ D1, D2 ∈ D2}.

Proof. Exercise.
tu

Examples.
- the class of intersections of two halfspaces,
- all ellipsoids,
- all half-ellipsoids,

- in R, the class
{
{x : θ1x+ . . .+ θrx

r ≤ t} :
(
θ
t

)
∈ Rr+1

}
.
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There are classes that are GC, but not VC.

Example. Let X = [0, 1]2, and let D be the collection of all convex subsets of X . Then D is not
VC, but when P is uniform, D is GC.

Definition 4.3.3. The VC dimension of D is

V (D) = inf{n : mD(n) < 2n}.

The following Lemma is nice to know, but to avoid digressions, we will not provide a proof.

Lemma 4.3.4. We have that D is VC if and only if V (D) < ∞. In fact, we have for V = V (D),
mD(n) ≤

∑V
k=0

(
n
k

)
. tu.

4.4. VC graph classes of functions.
Definition 4.4.1. The subgraph of a function g : X → R is

subgraph(g) = {(x, t) ∈ X ×R : g(x) ≥ t}.

A collection of functions G is called a VC class if the subgraphs {subgraph(g) : g ∈ G} form a VC class.

Example. G = {lD : D ∈ D} is GC if D is GC.

Examples (X = Rd).
a) G = {g(x) = θ0 + θ1x1 + . . .+ θdxd : θ ∈ Rd+1},
b) G = {g(x) = |θ0 + θ1x1 + . . .+ θdxd| : θ ∈ Rd+1} .

c) d = 1, G =

g(x) =
{
a+ bx if x ≤ c
d+ ex if x > c

,


a
b
c
d
e

 ∈ R5

,

d) d = 1, G = {g(x) = eθx : θ ∈ R}.

Definition 4.4.1. Let S be some subset of a metric space (Λ, d). For δ > 0, the δ-packing number
D(δ, S, d) of S is the largest value of N , such that there exist s1, . . . , sN in S with

d(sk, sj) > δ, ∀ k 6= j.

Note. For all δ > 0,
N(δ, S, d) ≤ D(δ, S, d).

Theorem 4.4.2. Let Q be any probability measure on X . Define d1,Q(g, g̃) = Q(|g − g̃|). For a VC
class G with VC dimension V , we have for a constant A depending only on V ,

N(δQ(G),G, d1,Q) ≤ max(Aδ−2V , eδ/4), ∀ δ > 0

.
Proof. Without loss of generality, assume Q(G) = 1. Choose S ∈ X with distribution dQS = GdQ.

Given S = s, choose T uniformly in the interval [−G(s), G(s)]. Let g1, . . . , gN be a maximal set in G,
such that Q(|gj − gk|) > δ for j 6= k. Consider a pair j 6= k. Given S = s, the probability that T falls in
between the two graphs of gj and gk is

|gj(s)− gk(s)|
2G(s)

.

So the unconditional probability that T falls in between the two graphs of gj and gk is∫
|gj(s)− gk(s)|

2G(s)
dQS(s) =

Q(|gj − gk|)
2

≥ δ

2
.
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Now, choose n independent copies {(Si, Ti)}n
i=1 of (T, S). The probability that none of these fall in

between the graphs of gj and gk is then at most

(1− δ/2)n.

The probability that for some j 6= k, none of these fall in between the graphs of gj and gk is then at
most (

N

2

)
(1− δ/2)n ≤ 1

2
exp

[
2 logN − nδ

2

]
≤ 1

2
< 1,

when we choose n the smallest integer such that

n ≥ 4 logN
δ

.

So for such a value of n, with positive probability, for any j 6= k, some of the Ti fall in between the
graphs of gj and gk. Therefore, we must have

N ≤ cnV .

But then, for N ≥ exp[δ/4],

N ≤ c

(
4 logN
δ

+ 1
)V

≤ c

(
8 logN
δ

)V

= c

(
16V logN

1
2V

δ

)V

≤ c

(
16V
δ

)V

N
1
2 .

So

N ≤ c2
(

16V
δ

)2V

.

tu

Corollary 4.4.3. Suppose G is VC and that
∫
GdP < ∞. Then by Theorem 4.4.2 and Theorem

4.1.4, we have ‖Pn − P‖G →P 0.

4.5. Exercises.

Exercise 1. Let G be a finite class of functions, with cardinality |G| := N > 1. Suppose that for some
finite constant K,

max
g∈G

‖g‖∞ ≤ K.

Use Bernstein’s inequality to show that for

δ2 ≥ 4 logN
n

[
δK +K2

]
one has

P (‖Pn − P‖G > δ) ≤ 2 exp
[
− nδ2

4(δK +K2)

]
.

Exercise 2. Let G be a finite class of functions, with cardinality |G| := N > 1. Suppose that G has
envelope G satisfying

P (G) <∞.

Let 0 < δ < 1, and take K large enough, so that

P (Gl{G > K}) ≤ δ2.

Show that for

δ ≥ 4K

√
logN
n

,
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P (‖Pn − P‖G > 4δ) ≤ 8 exp
[
− nδ2

16K2

]
+ δ.

Hint: use
|Pn(g)− P (g)| ≤ |Pn(gl{G ≤ K})− P ((gl{G ≤ K})|

+Pn(Gl{G > K}) + P (Gl{G > K}).

Exercise 3. Let G be a class of functions, with envelopeG, satisfying P (G) <∞ and 1
n logN(δ,G, d1,n) →P

0. Show that ‖Pn − P‖G →P 0.

Exercise 4.

Are the following classes of sets (functions) VC? Why (not)?

1) The class of all rectangles in Rd.

2) The class of all monotone functions on R.

3) The class of functions on [0, 1] given by

G = {g(x) = aebx + cedx : (a, b, c, d) ∈ [0, 1]4}.

4) The class of all sections in R2 (a section is of the form {(x1, x2) : x1 = a1+r sin t, x2 = a2+r cos t, θ1 ≤
t ≤ θ2}, for some (a1, a2) ∈ R2, some r > 0, and some 0 ≤ θ1 ≤ θ2 ≤ 2π).

5) The class of all star-shaped sets in R2 (a set D is star-shaped if for some a ∈ D and all b ∈ D also all
points on the line segment joining a and b are in D).

Exercise 5.

Let G be the class of all functions g on [0, 1] with derivative ġ satisfying |ġ| ≤ 1. Check that G is not
VC. Show that G is GC by using partial integration and the Glivenko-Cantelli Theorem for the empirical
distribution function.
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5. M-estimators
5.1 What is an M-estimator? Let X1, . . . , Xn, . . . be i.i.d. copies of a random variable X with

values in X and with distribution P .

Let Θ be a parameter space (a subset of some metric space) and let for θ ∈ Θ,

γθ : X → R,

be some loss function. We assume P (|γθ|) <∞ for all θ ∈ Θ. We estimate the unknown parameter

θ0 := arg min
θ∈Θ

P (γθ),

by the M-estimator
θ̂n := arg min

θ∈Θ
Pn(γθ).

We assume that θ0 exists and is unique and that θ̂n exists.

Examples.
(i) Location estimators. X = R, Θ = R, and
(i.a) γθ(x) = (x− θ)2 (estimating the mean),
(i.b) γθ(x) = |x− θ| (estimating the median).
(ii) Maximum likelihood. {pθ : θ ∈ Θ} family of densities w.r.t. σ-finite dominating measure µ, and

γθ = − log pθ.

If dP/dµ = pθ0 , θ0 ∈ Θ, then indeed θ0 is a minimizer of P (γθ), θ ∈ Θ.
(ii.a) Poisson distribution:

pθ(x) = eθ θ
x

x!
, θ > 0, x ∈ {1, 2, . . .}.

(ii.b) Logistic distribution:

pθ(x) =
eθ−x

(1 + eθ−x)2
, θ ∈ R, x ∈ R.

5.2. Consistency. Define for θ ∈ Θ,

R(θ) = P (γθ),

and
Rn(θ) = Pn(γθ).

We first present an easy proposition with a too stringent condition (•).

Proposition 5.2.1. Suppose that θ 7→ R(θ) is continuous. Assume moreover that

(•) sup
θ∈Θ

|Rn(θ)−R(θ)| →P 0,

i.e., that {γθ : θ ∈ Θ} is a GC class. Then θ̂n →P θ0.
Proof. We have

0 ≤ R(θ̂n)−R(θ0)

= [R(θ̂n)−R(θ0)]− [Rn(θ̂n)−Rn(θ0)] + [Rn(θ̂n)−Rn(θ0)]

≤ [R(θ̂n)−R(θ0)]− [Rn(θ̂n)−Rn(θ0)] →P 0.

So R(θ̂n) →P R(θ0) and hence θ̂n →P θ0.
tu

The assumption (•) is hardly ever met, because it is close to requiring compactness of Θ.
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Lemma 5.2.2. Suppose that (Θ, d) is compact and that θ 7→ γθ is continuous. Moreover, assume
that P (G) <∞, where

G = sup
θ∈Θ

|γθ|.

Then
sup
θ∈Θ

|Rn(θ)−R(θ)| →P 0.

Proof. Let
w(θ, ρ) = sup

{θ̃: d(θ̃,θ)<ρ}
|γθ − γθ̃|.

Then
w(θ, ρ) → 0, ρ→ 0.

By dominated convergence
P (w(θ, ρ)) → 0.

Let δ > 0 be arbitrary. Take ρθ in such a way that

P (w(θ, ρθ)) ≤ δ.

Let Bθ = {θ̃ : d(θ̃, θ) < ρθ} and let Bθ1 , . . . , BθN
be a finite cover of Θ. Then for G = {γθ : θ ∈ Θ},

P(N(2δ,G, d1.n) > N) → 0.

So the result follows from Theorem 4.1.4. tu

We give a lemma, which replaces compactness by a convexity assumption.

Lemma 5.2.3. Suppose that Θ is a convex subset of Rr, and that θ 7→ γθ, θ ∈ Θ is continuous and
convex. Suppose P (Gε) <∞ for some ε > 0, where

Gε = sup
‖θ−θ0‖≤ε

|γθ|.

Then θ̂n →P θ0.
Proof. Because Θ is finite-dimensional, the set {‖θ − θ0‖ ≤ ε} is compact. So by Lemma 5.2.2,

sup
‖θ−θ0‖≤ε

|Rn(θ)−R(θ)| →P 0.

Define
α =

ε

ε+ ‖θ̂n − θ0‖
and

θ̃n = αθ̂n + (1− α)θ0.

Then
‖θ̃n − θ0‖ ≤ ε.

Moreover,
Rn(θ̃n) ≤ αRn(θ̂n) + (1− α)Rn(θ0) ≤ Rn(θ0).

It follows from the arguments used in the proof of Proposition 5.2.1, that ‖θ̃n− θ0‖ →P 0. But then also

‖θ̂n − θ0‖ =
ε‖θ̃n − θ0‖
ε− ‖θ̃n − θ0‖

→P 0.

tu

5.3. Exercises.
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Exercise 1. Let Y ∈ {0, 1} be a binary response variable and Z ∈ R be a covariable. Assume the
logistic regression model

Pθ0(Y = 1|Z = z) =
1

1 + exp[α0 + β0z]
,

where θ0 = (α0, β0) ∈ R2 is an unknown parameter. Let {(Yi, Zi)}n
i=1 be i.i.d. copies of (Y,Z). Show

consistency of the MLE of θ0.

Exercise 2. Suppose X1, . . . , Xn are i.i.d. real-valued random variables with density f0 = dP/dµ on
[0,1]. Here, µ is Lebesgue measure on [0, 1]. Suppose it is given that f0 ∈ F , with F the set of all
decreasing densities bounded from above by 2 and from below by 1/2. Let f̂n be the MLE. Can you
show consistency of f̂n? For what metric?
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6. Uniform central limit theorems

After having studied uniform laws of large numbers, a natural question is: can we also prove uniform
central limit theorems? It turns out that precisely defining what a uniform central limit theorem is,
is quite involved, and actually beyond our scope. In Sections 6.1-6.4 we will therefore only briefly
indicate the results, and not present any proofs. These sections only reveal a glimps of the topic of
weak convergence on abstract spaces. The thing to remember from them is the concept asymptotic
continuity, because we will use that concept in our statistical applications. In Section 6.5 we will prove
that the empirical process indexed by a VC graph class is asymptotically continuous. This result will be
a corollary of another result of interest to (theoretical) statisticians: a result relating the increments of
the empirical process to the entropy of G.

6.1. Real-valued random variables. Let X = R.

Central limit theorem in R. Suppose EX = µ, and var(X) = σ2 exist. Then

P
(√

n(
X̄n − µ

σ
) ≤ z

)
→ Φ(z), for all z,

where Φ is the standard normal distribution function. tu.
Notation.

√
n

(
X̄n − µ

σ

)
→L N (0, 1),

or √
n(X̄n − µ) →L N (0, σ2).

6.2. Rd-valued random variables. Let X1, X2, . . . be i.i.d. Rd-valued random variables copies of
X, (X ∈ X = Rd), with expectation µ = EX, and covariance matrix Σ = EXXT − µµT .

Central limit theorem in Rd. We have

√
n(X̄n − µ) →L N (0,Σ),

i.e. √
n
[
aT (X̄n − µ)

]
→L N (0, aT Σa), for all a ∈ Rd.

tu.

6.3. Donsker’s Theorem. Let X = R. Recall the definition of the distribution function F and
the empirical distribution function Fn:

F (t) = P (X ≤ t), t ∈ R,

Fn(t) =
1
n

#{Xi ≤ t, 1 ≤ i ≤ n}, t ∈ R.

Define
Wn(t) :=

√
n(Fn(t)− F (t)), t ∈ R.

By the central limit theorem in R (Section 6.1), for all t

Wn(t) →L N (0, F (t)(1− F (t))) .

Also, by the central limit theorem in R2 (Section 6.2), for all s < t,(
Wn(s)
Wn(t)

)
→L N (0,Σ(s, t)),

where

Σ(s, t) =
(
F (s)(1− F (s)) F (s)(1− F (t))
F (s)(1− F (t)) F (t)(1− F (t))

)
.
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We are now going to consider the stochastic process Wn = {Wn(t) : t ∈ R}. The process Wn is
called the (classical) empirical process.

Definition 6.3.1. Let K0 be the collection of bounded functions on [0, 1] The stochastic process
B(·) ∈ K0, is called the standard Brownian bridge if
- B(0) = B(1) = 0,

- for all r ≥ 1 and all t1, . . . , tr ∈ (0, 1), the vector

B(t1)
...

B(tr)

 is multivariate normal with mean zero,

- for all s ≤ t, cov(B(s), B(t)) = s(1− t).
- the sample paths of B are a.s. continuous.

We now consider the process WF defined as

WF (t) = B(F (t)) : t ∈ R.

Thus, WF = B ◦ F .

Donsker’s theorem. Consider Wn and WF as elements of the space K of bounded functions on R.
We have

Wn →L WF ,

that is,
Ef(Wn) → Ef(WF ),

for all continuous and bounded functions f . tu

Reflection. Suppose F is continuous. Then, since B is almost surely continuous, also WF = B ◦ F
is almost surely continuous. So Wn must be approximately continuous as well in some sense. Indeed, we
have for any t and any sequence tn converging to t,

|Wn(tn)−Wn(t)| →P 0.

This is called asymptotic continuity.

6.4. Donsker classes. Let X1, . . . , Xn, . . . be i.i.d. copies of a random variable X, with values in
the space X , and with distribution P . Consider a class G of functions g : X → R. The (theoretical)
mean of a function g is

P (g) := Eg(X),

and the (empirical) average (based on the n observations X1, . . . , Xn) is

Pn(g) :=
1
n

n∑
i=1

g(Xi).

Here Pn is the empirical distribution (based on X1, . . . , Xn).

Definition 6.4.1. The empirical process indexed by G is

νn(g) :=
√
n (Pn(g)− P (g)) , g ∈ G.

Let us recall the central limit theorem for g fixed. Denote the variance of g(X) by

σ2(g) := var(g(X)) = P (g2)− (P (g))2.

If σ2(g) <∞, we have
νn(g) →L N (0, σ2(g)).

The central limit theorem also holds for finitely many g simultaneously. Let gk and gl be two functions
and denote the covariance between gk(X) and gl(X) by

σ(gk, gl) := cov(gk(X), gl(X)) = P (gkgl)− P (gk)P (gl).
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Then, whenever σ2(gk) <∞ for k = 1, . . . , r, νn(g1)
...

νn(gr)

→L N (0,Σg1,...,gr
),

where Σg1,...,gr
is the variance-covariance matrix

(∗) Σg1,...,gr =

 σ2(g1) . . . σ(g1, gr)
...

. . .
...

σ(g1, gr) . . . σ2(gr)

 .

Definition 6.4.2. Let ν be a Gaussian process indexed by G. Assume that for each r ∈ N and for
each finite collection {g1, . . . , gr} ⊂ G, the r-dimensional vector ν(g1)

...
ν(gr)


has a N (0,Σg1,...,gr

)-distribution, with Σg1,...,gr
defined in (*). We then call ν the P -Brownian bridge

indexed by G.

Definition 6.4.3. Consider νn and ν as bounded functions on G. We call G a P -Donsker class if

νn →L ν,

that is, if for all continuous and bounded functions f , we have

Ef(νn) → Ef(ν).

Definition 6.4.4. The process νn on G is called asymptotically continuous if for all g0 ∈ G, and
all (possibly random) sequences {gn} ⊂ G with σ(gn − g0) →P 0, we have

|νn(gn)− νn(g0)| →P 0.

We will use the notation
‖g‖22,P := P (g2),

i.e., ‖ · ‖2,P is the L2(P )-norm.

Remark. Note that σ(g) ≤ ‖g‖2,P .

Definition 6.4.5. The class G is called totally bounded for the metric d2,P (g, g̃) := ‖g − g̃‖2,P

induced by ‖ · ‖2,P , if its entropy logN(·,G, d2,P ) is finite.

Theorem 6.4.6. Suppose that G is totally bounded. Then G is a P -Donsker class if and only if νn

(as process on G) is asymptotically continuous.
tu

6.5. Chaining and the increments of the empirical process.

6.5.1. Chaining. We will consider the increments of the symmetrized empirical process in Section
6.5.2. There, we will work conditionally on X = (X1, . . . , Xn). We now describe the chaining technique
in this context

Let
‖g‖22,n := Pn(g2).

Let d2,n(g, g̃) = ‖g − g̃‖2,n, i.e., d2,n is the metric induced by ‖ · ‖2,n. Suppose that ‖g‖2,n ≤ R for all
g ∈ G. For notational convenience, we index the functions in G by a parameter θ ∈ Θ: G = {gθ : θ ∈ Θ}.
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Let for s = 0, 1, 2, . . ., {gs
j}

Ns
j=1 be a minimal 2−sR-covering set of (G, d2,n). So Ns = N(2−sR,G, d2,n),

and for each θ, there exists a gs
θ ∈ {gs

1, . . . , g
s
Ns
} such that ‖gθ − gs

θ‖2,n ≤ 2−sR. We use the parameter θ
here to indicate which function in the covering set approximates a particular g. We may choose g0

θ ≡ 0,
since ‖gθ‖2,n ≤ R. Then for any S,

gθ =
S∑

s=1

(gs
θ − gs−1

θ ) + (gθ − gS
θ ).

One can think of this as telescoping from gθ to gS
θ , i.e. we follow a path taking smaller and smaller steps.

As S → ∞, we have max1≤i≤n |gθ(Xi) − gS
θ (Xi)| → 0. The term

∑∞
s=1(g

s
θ − gs−1

θ ) can be handled by
exploiting the fact that as θ varies, each summand involves only finitely many functions.

6.5.2. Increments of the symmetrized process.
We use the notation a ∨ b = max{a, b} (a ∧ b = min{a, b}).

Lemma 6.5.2.1. On the set supg∈G ‖g‖2,n ≤ R, and

√
nδ ≥

(
14

∞∑
s=1

2−sR
√

logN(2−sR,G, d2,n) ∨ 70R log 2

)
,

we have

PX

(
sup
g∈G

|Pσ
n (g)| ≥ δ

)
≤ 4 exp[− nδ2

(70R)2
].

Proof. Let {gs
j}

Ns
j=1 be a minimal 2−sR-covering set of G, s = 0, 1, . . .. So Ns = N(2−sR,G, d2,n).

Now, use chaining. Write gθ =
∑∞

s=1(g
s
θ − gs−1

θ ). Note that by the triangle inequality,

‖gs
θ − gs−1

θ ‖2,n ≤ ‖gs
θ − gθ‖2,n + ‖gθ − gs−1

θ ‖2,n

≤ 2−sR+ 2−s+1R = 3(2−sR).

Let ηs be positive numbers satisfying
∑∞

s=1 ηs ≤ 1. Then

PX

(
sup
θ∈Θ

|Pσ
n (gs

θ − gs−1
θ )| ≥ δ

)

≤
∞∑

s=1

PX

(
sup
θ∈Θ

| 1
n
Pσ

n (gs
θ − gs−1

θ )| ≥ δηs

)

≤
∞∑

s=1

2 exp[2 logNs −
nδ2η2

s

18× 2−2sR2
].

What is a good choice for ηs? We take

ηs =
7× 2−sR

√
logNs√

nδ
∨ 2−s

√
s

8
.

Then indeed, by our condition on
√
nδ,

∞∑
s=1

ηs ≤
∞∑

s=1

72−sR
√

logNs√
nδ

+
∞∑

s=1

2−s
√
s

8
≤ 1

2
+

1
2

= 1.

Here, we used the bound
∞∑

s=1

2−s
√
s ≤ 1 +

∫ ∞

1

2−x
√
xdx

≤ 1 +
∫ ∞

0

2−x
√
xdx = 1 + (π/ log 2)1/2 ≤ 4.
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Observe that

ηs ≥
7× 2−sR

√
logNs√

nδ
,

so that

2 logNs ≤
2nδ2η2

s

49× 2−2sR2
.

Thus,
∞∑

s=1

2 exp[2 logNs −
nδ2η2

s

18× 2−2sR2
] ≤

∞∑
s=1

2 exp[− 13nδ2η2
s

49× 18× 2−2sR2
]

≤
∞∑

s=1

2 exp[− 2nδ2η2
s

49× 3× 2−2sR2
].

Next, invoke that ηs ≥ 2−s
√
s/8:

∞∑
s=1

2 exp[− 2nδ2η2
s

49× 3× 2−2sR2
] ≤

∞∑
s=1

2 exp[− nδ2s

49× 96R2
]

≤
∞∑

s=1

2 exp[− nδ2s

(70R)2
] = 2(1− exp[− nδ2

(70R)2
])−1 exp[− nδ2

(70R)2
]

≤ 4 exp[− nδ2

(70R)2
],

where in the last inequality, we used the assumption that

nδ2

(70R)2
≥ log 2.

Thus, we have shown that

PX

(
sup
g∈G

|Pσ
n (g)| ≥ δ

)
≤ 4 exp[− nδ2

(70R)2
].

tu
Remark. It is easy to see that

∞∑
s=1

2−sR
√

logN(2−sR,G, d2,n) ≤ 2
∫ R

0

√
logN(u,G, d2,n)du.

6.5.3. Asymptotic equicontinuity of the empirical process.
Fix some g0 ∈ G and let

G(δ) = {g ∈ G : ‖g − g0‖2,P ≤ δ}.

Lemma 6.5.3.1. Suppose that G has envelope G, with P (G2) <∞, and that

1
n

logN(δ,G, d2,n) →P 0.

Then for each δ > 0 fixed (i.e., not depending on n), and for

a

4
≥ 28A1/2(

∫ 2δ

0

H1/2(u)du ∨ 2δ),

we have

lim sup
n→∞

P

(
sup

g∈G(δ)

|νn(g)− νn(g0)| > a

)
≤ 16 exp[− a2

(140δ)2
]
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+ lim sup
n→∞

P
(

sup
u>0

H(u,G, d2,n)
H(u)

> A

)
.

Proof. The conditions P (G2) <∞ and imply that

sup
g∈G

|‖g − g0‖2,n − ‖g − g0‖2,P | →P 0..

So eventually, for each fixed δ > 0, with large probability

sup
g∈G(δ)

‖g − g0‖2,n ≤ 2δ.

The result now follows from Lemma 6.5.2.1. tu

Our next step is proving asymptotic equicontinuity of the empirical process. This means that we
shall take a small in Lemma 6.5.3.1, which is possible if the entropy integral converges. Assume that∫ 1

0

H1/2(u)du <∞,

and define

J(δ) = (
∫ δ

0

H1/2(u)du ∨ δ).

Roughly speaking, the increment at g0 of the empirical process νn(g) behaves like J(δ) for ‖g− g0‖ ≤ δ.
So, since J(δ) → 0 as δ → 0, the increments can be made arbitrary small by taking δ small enough.

Theorem 6.5.3.2. Suppose that G has envelope G with P (G2) <∞. Suppose that

lim
A→∞

lim sup
n→∞

P
(

sup
u>0

H(u,G, d2,n)
H(u)

> A

)
= 0.

Also assume ∫ 1

0

H1/2(u)du <∞.

Then the empirical process νn is asymptotically continuous at g0, i.e., for all η > 0, there exists a δ > 0
such that

(5.9) lim sup
n→∞

P

(
sup

g∈G(δ)

|νn(g)− νn(g0)| > η

)
< η.

Proof. Take A ≥ 1 sufficiently large, such that

16 exp[−A] <
η

2
,

and

lim sup
n→∞

P
(

sup
u>0

H(u,G, Pn)
H(u)

> A

)
≤ η

2
.

Next, take δ sufficiently small, such that

4× 28A1/2J(2δ) < η.

Then by Lemma 6.5.3.1,

lim sup
n→∞

P

(
sup

g∈G(δ)

|νn(g)− νn(g0)| > η

)

≤ 16 exp[−AJ
2(2δ)

(2δ)2
] +

η

2

≤ 16 exp[−A] +
η

2
< η,
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where we used
J(2δ) ≥ 2δ.

tu

Remark. Because the conditions in Theorem 6.5.3.2 do not depend on g0, its result holds for each
g0 i.e., we have in fact shown that νn is asymptotically continuous.

6.5.4. Application to VC graph classes.
Theorem 6.5.4.1. Suppose that G is a VC-graph class with envelope

G = sup
g∈G

|g|

satisfying P (G2) <∞. Then {νn(g) : g ∈ G} is asymptotically continuous, and so G is P -Donsker.
Proof. Apply Theorem 6.5.3.2 and Theorem 4.4.2.

tu

Remark. In particular, suppose that VC -graph class G with square integrable envelope G is
parametrized by θ in some parameter space Θ ⊂ Rr, i.e. G = {gθ : θ ∈ Θ}. Let zn(θ) = νn(gθ).
Question: do we have that for a (random) sequence θn with θn → θ0 (in probability), also

|zn(θn)− zn(θ0)| →P 0?

Indeed, if ‖gθ − gθ0‖2,P →P 0 as θ converges to θ0, the answer is yes.
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7. Asymptotic normality of M-estimators.

Consider an M-estimator θ̂n of a finite dimensional parameter θ0. We will give conditions for asymp-
totic normality of θ̂n. It turns out that these conditions in fact imply asymptotic linearity. Our first set
of conditions include differentiability in θ at each x of the loss function γθ(x). The proof of asymptotic
normality is then the easiest. In the second set of conditions, only differentiability in quadratic mean of
γθ is required.

The results of the previous chapter (asymptotic continuity) supply us with an elegant way to handle
remainder terms in the proofs.

In this chapter, we assume that θ0 is an interior point of Θ ⊂ Rr. Moreoever, we assume that we
already showed that θ̂n is consistent.

7.1. Asymptotic linearity.

Definition 7.1.1. The (sequence of) estimator(s) θ̂n of θ0 is called asymptotically linear if we
may write √

n(θ̂n − θ0) =
√
nPn(l) + oP(1),

where

l =

 l1
...
lr

 : X → Rr,

satisfies P (l) = 0 and P (l2k) < ∞, k = 1, . . . , r. The function l is then called the influence function.
For the case r = 1, we call σ2 := P (l2) the asymptotic variance.

Definition 7.1.2. Let θ̂n,1 and θ̂n,2 be two asymptotically linear estimators of θ0, with asymptotic
variance σ2

1 and σ2
2 respectively. Then

e1,2 :=
σ2

2

σ2
1

is called the asymptotic relative efficiency (of θ̂n,1 as compared to θ̂n,2).

7.2. Conditions a,b and c for asymptotic normality. We start with 3 conditions a,b and c,
which are easier to check but more stringent. We later relax them to conditions A,B and C.

Condition a. There exists an ε > 0 such that θ 7→ γθ is differentiable for all |θ − θ0| < ε and all x,
with derivative

ψθ(x) :=
∂

∂θ
γθ(x), x ∈ X .

Condition b. We have as θ → θ0,

P (ψθ − ψθ0) = V (θ − θ0) + o(1)|θ − θ0|,

where V is a positive definite matrix.

Condition c. There exists an ε > 0 such that the class

{ψθ : |θ − θ0| < ε}

and is P -Donsker with envelope Ψ satisfying P (Ψ2) <∞. Moreover,

lim
θ→θ0

‖ψθ − ψθ0‖2,P = 0.

Lemma 7.2.1. Suppose conditions a,b and c. Then θ̂n is asymptotically linear with influence
function

l = −V −1ψθ0 ,

so √
n(θ̂n − θ0) →L N (0, V −1JV −1),
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where
J = P (ψθ0ψ

T
θ0

).

tu
Proof. Recall that θ0 is an interior point of Θ, and minimizes P (γθ), so that P (ψθ0) = 0. Because

θ̂n is consistent, it is eventually a solution of the score equations

Pn(ψθ̂n
) = 0.

Rewrite the score equations as

0 = Pn(ψθ̂n
) = Pn(ψθ̂n

− ψθ0) + Pn(ψθ0)

= (Pn − P )(ψθ̂n
− ψθ0) + P (ψθ̂n

) + Pn(ψθ0).

Now, use condition b and the asymptotic equicontinuity of {ψθ : |θ− θ0| ≤ ε} (see Chapter 6), to obtain

0 = oP(n−1/2) + V (θ̂n − θ0) + o(|θ̂n − θ0|) + Pn(ψθ0).

This yields
(θ̂n − θ0) = −V −1Pn(ψθ0) + oP(n−1/2).

tu

Example: Huber estimator Let X = R, Θ = R. The Huber estimator corresponds to the loss
function

γθ(x) = γ(x− θ),

with
γ(x) = x2l{|x| ≤ k}+ (2k|x| − k2)l{|x| > k}, x ∈ R.

Here, 0 < k <∞ is some fixed constant, chosen by the statistician. We will now verify a,b and c.
a)

ψθ(x) =

{+2k if x− θ ≤ k
−2(x− θ) if |x− θ| ≤ k
−2k if x− θ ≥ k

.

b) We have
d

dθ

∫
ψθdP = 2(F (k + θ)− F (−k + θ)),

where F (t) = P (X ≤ t), t ∈ R is the distribution function. So

V = 2(F (k + θ0)− F (−k + θ0)).

c) Clearly ψθ : θ ∈ R is a VC graph class, with envelope Ψ ≤ 2k.
So the Huber estimator θ̂n has influence function

l(x) =


−k

F (k+θ0)−F (−k+θ0)
if x− θ0 ≤ −k

x−θ0
F (k+θ0)−F (−k+θ0)

if |x− θ0| ≤ k
k

F (k+θ0)−F (−k+θ0)
if x− θ0 ≥ k

.

The asymptotic variance is

σ2 =
k2F (−k + θ0) +

∫ k+θ0

−k+θ0
(x− θ0)2dF (x) + k2(1− F (k + θ0))

(F (k + θ0)− F (−k + θ0))2
.

7.3. Asymptotics for the median. The median (see Example (i.b) in Chapter 5) can be regarded
as the limiting case of a Huber estimator, with k ↓ 0. However, the loss function γθ(x) = |x − θ| is not
differentiable, i.e., does not satisfy condition a. For even sample sizes, we do nevertheless have the score
equation Fn(θ̂n)− 1

2 = 0. Let us investigate this closer.
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Let X ∈ R have distribution F , and let Fn be the empirical distribution. The population median θ0 is
a solution of the equation

F (θ0) = 0.

We assume this solution exists and also that F has positive density f in a neighborhood of θ0. Consider
now for simplicity even sample sizes n and let the sample median θ̂n be any solution of

Fn(θ̂n) = 0.

Then we get
0 = Fn(θ̂n)− F (θ0)

=
[
Fn(θ̂n)− F (θ̂n)

]
+
[
F (θ̂n)− F (θ0)

]
=

1√
n
Wn(θ̂n) +

[
F (θ̂n)− F (θ0)

]
,

where Wn =
√
n(Fn − F ) is the empirical process. Since F is continuous at θ0, and θ̂n → θ0, we have

by the asymptotic continuity of the empirical process (Section 6.3), that Wn(θ̂n) = Wn(θ0) + oP(1). We
thus arrive at

0 = Wn(θ0) +
√
n
[
F (θ̂n)− F (θ0)

]
+ oP(1)

= Wn(θ0) +
√
n[f(θ0) + o(1)][θ̂n − θ0].

In other words,
√
n(θ̂n − θ0) = −Wn(θ0)

f(θ0)
+ oP(1).

So the influence function is

l(x) =

{
− 1

2f(θ0)
if x ≤ θ0

+ 1
2f(θ0)

if x > θ0
,

and the asymptotic variance is

σ2 =
1

4f(θ0)2
.

We can now compare median and mean. It is easily seen that the asymptotic relative efficiency of
the mean as compared to the median is

e1,2 =
1

4σ2
0f(θ0)2

,

where σ2
0 = var(X). So e1,2 = π/2 for the normal distribution, and e1,2 = 1/2 for the double exponential

(Laplace) distribution. The density of the double exponential distribution is

f(x) =
1√
2σ2

0

exp

[
−
√

2|x− θ0|
σ0

]
, x ∈ R.

7.4. Conditions A,B and C for asymptotic normaility. We are now going to relax the condition
of differentiability of γθ.

Condition A. (Differentiability in quadratic mean.) There exists a function ψ0 : X → Rr, with
P (ψ2

0,k) <∞, k = 1, . . . , r, such that

lim
θ→θ0

∥∥γθ − γθ0 − (θ − θ0)Tψ0

∥∥
2,P

|θ − θ0|
= 0.

Condition B. We have as θ → θ0,

P (γθ)− P (γθ0) =
1
2
(θ − θ0)TV (θ − θ0) + o(1)|θ − θ0|2,
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with V a positive definite matrix.

Condition C. Define for θ 6= θ0,

gθ =
γθ − γθ0

|θ − θ0|
.

Suppose that for some ε > 0, the class {gθ : 0 < |θ − θ0| < ε} is a P -Donsker class with envelope G
satisfying P (G2) <∞.

Lemma 7.4.1. Suppose conditions A,B and C are met. Then θ̂n has influence function

l = −V −1ψ0,

and so √
(θ̂n − θ0) →L N (0, V −1JV −1),

where J =
∫
ψ0ψ

T
0 dP .

Proof. Since {gθ : |θ − θ0| ≤ ε} is a P -Donsker class, and θ̂n is consistent, we may write

0 ≥ Pn(γθ̂n
− γθ0) = (Pn − P )(γθ̂n

− γθ0) + P (γθ̂n
− γθ0)

= (Pn − P )(gθ)|θ − θ0|+ P (γθ̂n
− γθ0)

= (Pn − P )(θ̂n − θ0)Tψ0 + oP(n−1/2) + P (γθ̂n
− γθ0)

= (Pn − P )(θ̂n − θ0)Tψ0 + oP(n−1/2)|θ̂n − θ0|+
1
2
(θ̂n − θ0)TV (θ̂n − θ0) + o(|θ̂n − θ0|2).

This implies |θ̂n − θ0| = OP(n−1/2). But then

|V 1/2(θ̂n − θ0) + V −1/2(Pn − P )(ψ0) + oP(n−1/2)|2 ≤ oP(
1
n

).

Therefore,
θ̂n − θ0 = −V −1(Pn − P )(ψ0) + oP(n−1/2).

Because P (ψ0) = 0, the result follows, and the asymptotic covariance matrix is V −1JV −1. tu

7.5.Exercises.

Exercise 1. Suppose X has the logistic distribution with location parameter θ (see Example (ii.b) of
Chapter 5). Show that the maximum likelihood estimator has asymptotic variance equal to 3, and the
median has asymptotic variance equal to 4. Hence, the asymptotic relative efficiency of the maximum
likelihood estimator as compared to the median is 4/3.

Exercise 2. Let (Xi, Yi), i = 1, . . . , n, . . . be i.i.d. copies of (X,Y ), where X ∈ Rd and Y ∈ R. Suppose
that the conditional distribution of Y given X = x has median m(x) = α0 + α1x1 + . . . αdxd, with

α =

α0
...
αd

 ∈ Rd+1.

Assume moreover that given X = x, the random variable Y −m(x) has a density f not depending on x,
with f positive in a neighborhood of zero. Suppose moreover that

Σ = E

(
1 X
X XXT

)
exists. Let

α̂n = arg min
a∈Rd+1

1
n

n∑
i=1

|Yi − a0 − a1Xi,1 − . . .− adXi,d| ,

be the least absolute deviations (LAD) estimator. Show that

√
n(α̂n − α) →L N

(
0,

1
4f2(0)

Σ−1

)
,

by verifying conditions A,B and C.
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8. Rates of convergence for least squares estimators

Probability inequalities for the least squares estimator are obtained, under conditions on the entropy of
the class of regression functions. In the examples, we study smooth regression functions, functions of
bounded variation, concave functions, analytic functions, and image restoration. Results for he entropies
of various classes of functions is taken from the literature on approximation theory.

Let Y1, . . . , Yn be real-valued observations, satisfying

Yi = g0(zi) +Wi, i = 1, . . . , n,

with z1, . . . , zn (fixed) covariates in a space Z, W1, . . . ,Wn independent errors with expectation zero,
and with the unknown regression function g0 in a given class G of regression functions. The least squares
estimator is

ĝn := arg min
g∈G

n∑
i=1

(Yi − g(zi))2.

Throughout, we assume that a minimizer ĝn ∈ G of the sum of squares exists, but it need not be unique.
The following notation will be used. The empirical measure of the covariates is

Qn :=
1
n

n∑
i=1

δzi .

For g a function on Z, we denote its squared L2(Qn)-norm by

‖g‖2n := ‖g‖22,Qn
:=

1
n

n∑
i=1

g2(zi).

The empirical inner product between error and regression function is written as

(w, g)n =
1
n

n∑
i=1

Wig(zi).

Finally, we let
G(R) := {g ∈ G : ‖g − g0‖n ≤ R}

denote a ball around g0 with radius R, intersected with G.
The main idea to arrive at rates of convergence for ĝn is to invoke the basic inequality

‖ĝn − g0‖2n ≤ 2(w, ĝn − g0)n.

The modulus of continuity of the process {(w, g − g0)n : g ∈ G(R)} can be derived from the entropy of
G(R), endowed with the metric

dn(g, g̃) := ‖g − g̃‖n.

8.1. Gaussian errors.
When the errors are Gaussian, it is not hard to extend the maximal inequality of Lemma 6.5.2.1. We

therefore, and to simplify the exposition, will assume in this chapter that

W1, . . . ,Wn are i.i,d, N (0, 1)−distributed.

Then, as in Lemma 6.5.2.1, for

√
nδ ≥ 28

∫ R

0

√
logN(u,G(R), dn)du ∨ 70R log 2,

we have

P

(
sup

g∈G(R)

(w, g − g0)n ≥ δ

)
≤ 4 exp

[
− nδ2

(70R)2

]
. (∗)
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8.2. Rates of convergence.
Define

J(δ,G(δ), dn) =
∫ δ

0

√
logN(u,G(δ), dn)du ∨ δ.

Theorem 8.2.1. Take Ψ(δ) ≥ J(δ,G(δ), dn) in such a way that Ψ(δ)/δ2 is a non-increasing function
of δ. Then for a constant c, and for √

nδ2n ≥ cΨ(δn)

we have for all δ ≥ δn,

P(‖ĝn − g0‖n > δ) ≤ c exp[−nδ
2

c2
].

Proof. We have
P(‖ĝn − g0‖n > δ) ≤

∞∑
s=0

P

(
sup

g∈G(2s+1δ)

(w, g − g0)n ≥ 22s−1δ2

)
:=

∞∑
s=0

Ps.

Now, if √
nδ2n ≥ c1Ψ(δn),

then also for all 2s+1δ > δn, √
n22s+2δ2 ≥ c1Ψ(2s+1δ).

So, for an appropriate choice of c1, we may apply (*) to each Ps. This gives, for some c2, c3,

∞∑
s=0

Ps ≤
∞∑

s=0

c2 exp[− n24s−2δ4

c222s+2δ2
] ≤ c3 exp[−nδ

2

c23
].

Take c = max{c1, c2, c3}. tu

8.3. Examples.

Example 8.3.1. Linear regression. Let

G = {g(z) = θ1ψ1(z) + . . .+ θrψr(z) : θ ∈ Rr}.

One may verify

logN(u,G(δ), dn) ≤ r log(
δ + 4u
u

), for all 0 < u < δ, δ > 0.

So ∫ δ

0

√
logN(u,G(δ), dn)du ≤ r1/2

∫ δ

0

log1/2(
δ + 4u
δ

)du

= r1/2δ

∫ 1

0

log1/2(1 + 4v)dv := A0r
1/2δ.

So Theorem 8.2.1 can be applied with

δn ≥ cA0

√
r

n
.

It yields that for some constant c (not the same at each appearance) and for all T ≥ c,

P(‖ĝn − g0‖n > T

√
r

n
) ≤ c exp[−T

2r

c2
].

(Note that we made extensive use here from the fact that it suffices to calculate the local entropy of G.)
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Example 8.3.2. Smooth functions. Let

G = {g : [0, 1] → R,
∫

(g(m)(z))2dz ≤M2}.

Let ψk(z) = zk−1, k = 1, . . . ,m, ψ(z) = (ψ1(z), . . . , ψm(z))T and Σn =
∫
ψψT dQn. Denote the

smallest eigenvalue of Σn by λn, and assume that

λn ≥ λ > 0, for all n ≥ n0.

One can show (Kolmogorov and Tihomirov (1959)) that

logN(δ,G(δ), dn) ≤ Aδ−
1
m , for small δ > 0,

where the constant A depends on λ. Hence, we find from Theorem 8.2.1 that for T ≥ c, ,

P(‖ĝn − g0‖n > Tn−
m

2m+1 ) ≤ c exp[−T
2n

1
2m+1

c2
].

Example 8.3.3. Functions of bounded variation in R. Let

G = {g : R → R,
∫
|g

′
(z)|dz ≤M}.

Without loss of generality, we may assume that z1 ≤ . . . ≤ zn. The derivative should be understood in
the generalized sense: ∫

|g
′
(z)|dz :=

n∑
i=2

|g(zi)− g(zi−1)|.

Define for g ∈ G,

α :=
∫
gdQn.

Then it is easy to see that,
max

i=1,...,n
|g(zi)| ≤ α+M.

One can now show (Birman and Solomjak (1967)) that

logN(δ,G(δ), dn) ≤ Aδ−1, for small δ > 0,

and therefore, for all T ≥ c,

P(‖ĝn − g0‖n > Tn−1/3) ≤ c exp[−T
2n1/3

c2
].

Example 8.3.4. Functions of bounded variation in R2. Suppose that zi = (uk, vl), i = kl,
k = 1, . . . , n1, l = 1, . . . , n2, n = n1n2, with u1 ≤ . . . ≤ un1 , v1 ≤ . . . ≤ vn2 . Consider the class

G = {g : R2 → R, I(g) ≤M}

where
I(g) := I0(g) + I1(g1·) + I2(g·2),

I0(g) :=
n2∑

k=2

n2∑
l=2

|g(uk, vl)− g(uk−1, vl)− g(uk, vl−1) + g(uk−1, vl−1)|,

g1·(u) :=
1
n2

n2∑
l=1

g(u, vl),
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g·2(v) :=
1
n1

n1∑
k=1

g(uk, v),

I1(g1·) :=
n1∑

k=2

|g1·(uk)− g1·(uk−1)|,

and

I2(g·2) :=
n2∑
l=2

|g·2(vl)− g·2(vl−1)|.

Thus, each g ∈ G as well as its marginals have total variation bounded by M . We apply the result of
Ball and Pajor (1990) on convex hulls. Let

Λ := {all distribution functions F on R2},

and
K := {l(−∞,z] : z ∈ R2}.

Clearly, Λ = conv(K), and

N(δ,K, dn) ≤ c
1
δ4
, for all δ > 0.

Then from Pall and Pajor (1990),

logN(δ,Λ, dn) ≤ Aδ−
4
3 , for all δ > 0.

The same bound holds therefore for any uniformly bounded subset of G. Now, any function g ∈ G can
be expressed as

g(u, v) = g̃(u, v) + g̃1·(u) + g̃·2(v) + α,

where

α :=
1

n1n2

n1∑
k=1

n2∑
l=1

g(uk, vk),

and where
n1∑

k=1

n2∑
l=1

g̃(uk, vl) = 0,

n1∑
k=1

g̃1·(uk) = 0,

as well as
n2∑
l=1

g̃·2(vl) = 0.

It is easy to see that

|g̃(uk, vl)| ≤ I0(g̃) = I0(g), k = 1, . . . , n1, l = 1, . . . , n2,

|g̃1·(uk)| ≤ I1(g̃1·) = I1(g1·), k = 1, . . . , n1,

and
|g·2(vl)| ≤ I2(g̃·2) = I2(g·2), l = 1, . . . , n2.

Whence
{g̃ + g̃1· + g̃·2 : g ∈ G}

is a uniformly bounded class, for which the entropy bound A1δ
−4/3 holds, with A1 depending on M . It

follows that
logN(u,G(δ), dn) ≤ A1u

− 4
3 +A2 log(

δ

u
), 0 < u ≤ δ.
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From Theorem 8.2.1, we find for all T ≥ c,

P(‖ĝn − g0‖n > Tn−
3
10 ) ≤ c exp[−T

2n
2
5

c2
].

The result can be extended to functions of bounded variation in Rr. Then one finds the rate ‖ĝn −
g0‖n = OP(n−

1+r
2+4r ).

Example 8.3.5. Concave functions. Let

G = {g : [0, 1] → R, 0 ≤ g
′
≤M, g

′
decreasing}.

Then G is a subset of

{g : [0, 1] → R,
∫ 1

0

|g
′′
(z)|dz ≤ 2M}.

Birman and Solomjak (1967) prove that for all m ∈ {2, 3, . . .},

logN(δ, {g : [0, 1] → [0, 1] :
∫ 1

0

|g(m)(z)|dz ≤ 1}, d∞) ≤ Aδ−
1
m , for all δ > 0.

Again, our class G is not uniformly bounded, but we can write for g ∈ G,

g = g1 + g2,

with g1(z) := θ1 + θ2z and |g2|∞ ≤ 2M . Assume now that 1
n

∑n
i=1(zi − z̄)2 stays away from 0. Then,

we obtain for T ≥ c,

P(‖ĝn − g0‖n > Tn−
2
5 ) ≤ c exp[−T

2n
1
5

c2
].

Example 8.3.6. Analytic functions. Let

G = {g : [0, 1] → R : g(k) exists for all k ≥ 0, |g(k)|∞ ≤M for all k ≥ m}.

.

Lemma 8.3.1 We have

logN(u,G(δ), dn) ≤ (
log(3M

u )
log 2

+ 1) ∨m) log(
3δ + 6u

u
), 0 < u < δ.

Proof. Take

d = (b
log(M

u )
log 2

c+ 1) ∨m,

where bxc is the integer part of x ≥ 0. For each g ∈ G, we can find a polynomial f of degree d− 1 such
that

|g(z)− f(z)| ≤M |z − 1
2
|d ≤M(

1
2
)d ≤ u.

Now, let F be the collection of all polynomials of degree d − 1, and let f0 ∈ F be the approximating
polynomial of g0, with |g0 − f0|∞ ≤ u.

If ‖g − g0‖n ≤ δ, we find ‖f − f0‖n ≤ δ + 2u. We know that

logN(u,F(δ + 2u), dn) ≤ d log(
δ + 6u
u

), u > 0, δ > 0.

If ‖f − f̃‖n ≤ u and |g − f |∞ ≤ u as well as |g̃ − f̃ |∞ ≤ u, we obtain ‖g − g̃‖n ≤ 3u. So,

H(3u,Gn(δ), dn) ≤ (
log(M

u )
log 2

+ 1) ∨m) log(
δ + 6u
u

), u > 0, δ > 0.

39



tu

From Theorem 8.2.1, it follows that for T ≥ c,

P(‖ĝn − g0‖n > Tn−1/2 log1/2 n) ≤ c exp[−T
2 log n
c2

].

Example 8.3.7. Image restoration.
Case (i). Let Z ⊂ R2 be some subset of the plane. Each site z ∈ Z has a certain gray-level g0(z),

which is expressed as a number between 0 and 1, i.e., g0(z) ∈ [0, 1]. We have noisy data on a set of
n = n1n2 pixels {zkl : k = 1, . . . , n1, l = 1, . . . , n2} ⊂ Z:

Ykl = g0(zkl) +Wkl,

where the measurement errors {Wkl : k = 1, . . . , n1, l = 1, . . . , n2} are independent N (0, 1) random
variables. Now, each patch of a certain gray-level is a mixture of certain amounts of black and white.
Let

G = conv(K),

where
K := {lD : D ∈ D}.

Assume that
N(δ,K, dn) ≤ cδ−w, for all δ > 0.

Then from Ball and Pajor(1990),

logN(δ,G, dn) ≤ Aδ−
2w

2+w , for all δ > 0.

It follows from Theorem 8.2.1 that for T ≥ c,

P(‖ĝn − g0‖n > Tn−
2+w
4+4w ) ≤ c exp[−T

2n
w

2+2w

c2
].

Case (ii). Consider a black-and-white image observed with noise. Let Z = [0, 1]2 be the unit square,
and

g0(z) =
{

1, if z is black,
0, if z is white .

The black part of the image is
D0 := {z ∈ [0, 1]2 : g0(z) = 1}.

We observe
Ykl = g(zkl) +Wkl,

with zkl = (uk, vl), uk = k/m, vl = l/m, k, l ∈ {1, . . . ,m}. The total number of pixels is thus n = m2.
Suppose that

D0 ∈ D = {all convex subsets of [0, 1]2},

and write
G := {lD : D ∈ D}.

Dudley (1984) shows that for all δ > 0 sufficiently small

logN(δ,G, dn) ≤ Aδ−
1
2 ,

so that for T ≥ c,

P(‖ĝn − g0‖n > Tn−
2
5 ) ≤ c exp[−T

2n
1
5

c2
].

Let D̂n be the estimate of the black area, so that ĝn = lD̂n
. For two sets D1 and D2, denote the

symmetric difference by
D1∆D2 := (D1 ∩Dc

2) ∪ (Dc
1 ∩D2).
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Since Qn(D) = ‖lD‖2n, we find
Qn(D̂n∆D0) = OP(n−

4
5 ).

Remark. In higher dimensions, say Z = [0, 1]r, r ≥ 2, the class G of indicators of convex sets has
entropy

logN(δ,G, dn) ≤ Aδ−
r−1
2 , δ ↓ 0,

provided that the pixels are on a regular grid (see Dudley (1984)). So the rate is then

Qn(D̂n∆D0) =

OP(n−
4

r+3 ) , if r ∈ {2, 3, 4},
OP(n−

1
2 log n), if r = 5,

OP(n−
2

r−1 ), if r ≥ 6 .

For r ≥ 5, the least squares estimator converges with suboptimal rate.

8.4. Exercises.

8.1. Let Y1, . . . , Yn be independent, uniformly sub-Gaussian random variables, with EYi = α0 for
i = 1, . . . , bnγ0c, and EYi = β0 for i = bnγ0c + 1, . . . , n, where α0, β0 and the change point γ0 are
completely unknown. Write g0(i) = g(i;α0, β0, γ0) = α0l{1 ≤ i ≤ bnγ0c} + β0l{bnγ0c + 1 ≤ i ≤ n}.
We call the parameter (α0, β0, γ0) identifiable if α0 6= β0 and γ0 ∈ (0, 1). Let ĝn = g(·; α̂n, β̂n, γ̂n) be
the least squares estimator. Show that if α0, β0, γ0 is identifiable, then ‖ĝn − g0‖n = OP(n−1/2), and
|α̂n−α0| = OP(n−1/2), |β̂n−β0| = OP(n−1/2), and |γ̂n−γ0| = OP(n−1). If (α0, β0, γ0) is not identifiable,
show that ‖ĝn − g0‖n = OP(n−1/2(log log n)1/2).

8.2. Let zi = i/n, i = 1, . . . , n, and let G consist of the functions

g(z) =
{
α1 + α2z, if z ≤ γ
β1 + β2z, if z > γ

.

Suppose g0 is continuous, but does have a kink at γ0: α1,0 = α2,0 = 0, β1,0 = − 1
2 , β2,0 = 1, and γ0 = 1

2 .
Show that ‖ĝn − g0‖n = OP(n−1/2), and that |α̂n − α0| = OP(n−1/2), |β̂n − β0| = OP(n−1/2) and
|γ̂n − γ0| = OP(n−1/3).

8.3. If G is a uniformly bounded class of increasing functions, show that it follows from Theorem 8.2.1
that ‖ĝn − g0‖n = OP(n−1/3(log n)1/3). (Actually, by a more tight bound on the entropy one has the
rate OP(n−1/3), see Example 8.3.3.).
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9. Penalized least squares

We revisit the regression problem of the previous chapter (but use a slightly different notation). One has
observations {(xi, Yi)}n

i=1, with x1, . . . , xn fixed co-variables, and Y1, . . . , Yn response variables, satisfying
the regression

Yi = f0(xi) + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent and centered noise variables, and f0 is an unknown function on X . The
errors are assumed to be N (0, σ2)-distributed.

Let F̄ be a collection of regression functions. The penalized least squares estimator is

f̂n = arg min
f∈F̄

{
1
n

n∑
i=1

|Yi − f(xi)|2 + pen(f)

}
.

Here pen(f) is a penalty on the complexity of the function f . Let Qn be the empirical distribution of
x1, . . . , xn and ‖ · ‖n be the L2(Qn)-norm. Define

f∗ = arg min
f∈F̄

{
‖f − f0‖2n + pen(f)

}
.

Our aim is to show that

(∗) E‖f̂n − f0‖2n ≤ const.
{
‖f∗ − f0‖2n + pen(f∗)

}
.

When this aim is indeed reached, we loosely say that f̂n satisfies an oracle inequality. In fact, what (*)
says it that f̂n behaves as the noiseless version f∗. That means so to speak that we “overruled” the
variance of the noise.

In Section 9.1, we recall the definitions of estimation and approximation error. Section 9.2 calculates
the estimation error when one employs least squares estimation, without penalty, over a finite model
class. The estimation error turns out to behave as the log-cardinality of the model class. Section 9.3
shows that when considering a collection of nested finite models, a penalty pen(f) proportional to the
log-cardinality of the smallest class containing f will indeed mimic the oracle over this collection of
models. In Section 9.4, we consider general penalties. It turns out that the (local) entropy of the model
classes plays a crucial rule. The local entropy a finite-dimensional space is proportional to its dimension.
For a finite class, the entropy is (bounded by) its log-cardinality.

Whether or not (*) holds true depends on the choice of the penalty. In Section 9.4, we show that
when the penalty is taken “too small” there will appear an additional term showing that not all variance
was “killed”. Section 9.5 presents an example.

Throughout this chapter, we assume the noise level σ > 0 to be known. In that case, by a rescaling
argument, one can assume without loss of generality that σ = 1. In general, one needs a good estimate of
an upper bound for σ, because the penalties considered in this chapter depend on the noise level. When
one replaces the unknown noise level σ by an estimated upper bound, the penalty in fact becomes data
dependent.

9.1. Estimation and approximation error. Let F be a model class. Consider the least squares
estimator without penalty

f̂n(·,F) = arg min
f∈F

1
n

n∑
i=1

|Yi − f(xi)|2.

The excess risk ‖f̂n(·,F)−f0‖2n of this estimator is the sum of estimation error and approximation error.
Now, if we have a collection of models {F}, a penalty is usually some measure of the complexity

of the model class F . With some abuse of notation, write this penalty as pen(F). The corresponding
penalty on the functions f is then

pen(f) = min
F : f∈F

pen(F).

We may then write

f̂n = arg min
F∈{F}

{
1
n

n∑
i=1

|Yi − f̂n(xi,F)|2 + pen(F)

}
,
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where f̂n(·,F) is the least squares estimator over F . Similarly,

f∗ = arg min
F∈{F}

{‖f∗(·,F)− f0‖2n + pen(F)},

where f∗(·,F) is the best approximation of f0 in the model F .
As we will see, taking pen(F) proportional to (an estimate) of the estimation error of f̂n(·,F) will

(up to constants and possibly (log n)-factors) balance estimation error and approximation error.
In this chapter, the empirical process takes the form

νn(f) =
1√
n

n∑
i=1

εif(xi),

with the function f ranging over (some subclass of) F̄ . Probability inequalities for the empirical process
are derived using Exercise 2.4.1. The latter is for normally distributed random variables. It is exactly
at this place where our assumption of normally distributed noise comes in. Relaxing the normality
assumption is straightforward, provided a proper probability inequality, an inequality of sub-Gaussian
type, goes through. In fact, at the cost of additional, essentially technical, assumptions, an inequality of
exponential type on the errors is sufficient as well (see van de Geer (2000)).

9.2. Finite models. Let F be a finite collection of functions, with cardinality |F| ≥ 2. Consider
the least squares estimator over F

f̂n = arg min
f∈F

1
n

n∑
i=1

|Yi − f(xi)|2.

In this section, F is fixed, and we do not explicitly express the dependency of f̂n on F . Define

‖f∗ − f0‖n = min
f∈F

‖f − f0‖n.

The dependence of f∗ on F is also not expressed in the notation of this section. Alternatively stated, we
take here

pen(f) =
{

0 ∀f ∈ F
∞ ∀f ∈ F̄\F .

The result of Lemma 9.2.1 below implies that the estimation error is proportional to log |F|/n, i.e.,
it is logarithmic in the number of elements in the parameter space. We present the result in terms of a
probability inequality. An inequality for e.g., the average excess risk follows from this (see Exercise 9.1).

Lemma 9.2.1. We have for all t > 0 and 0 < δ < 1,

P
(
‖f̂n − f0‖2n ≥ (

1 + δ

1− δ
)
{
‖f∗ − f0‖2n +

4 log |F|
nδ

+
4t2

δ

})
≤ exp[−nt2].

Proof. We have the basic inequality

‖f̂n − f0‖2n ≤
2
n

n∑
i=1

εi(f̂n(xi)− f∗(xi)) + ‖f∗ − f0‖2n.

By Exercise 2.1.1, for all t > 0,

P
(

max
f∈F, ‖f−f∗‖n>0

1
n

∑n
i=1 εi(f(xi)− f∗(xi))

‖f − f∗‖n
>
√

2 log |F|/n+ 2t2
)

≤ |F| exp[−(log |F|+ nt2)] = exp[−nt2].

If 1
n

∑n
i=1 εi(f̂n(xi)− f∗(xi)) ≤ (2 log |F|/n+ 2t2)1/2‖f̂n − f∗‖n, we have, using 2

√
ab ≤ a+ b for all

non-negative a and b,

‖f̂n − f0‖2n ≤ 2(2 log |F|/n+ 2t2)1/2‖f̂n − f∗‖n + ‖f∗ − f0‖2n
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≤ δ‖f̂n − f0‖2n + 4 log |F|/(nδ) + 4t2/δ + (1 + δ)‖f∗ − f0‖2n.

tu

9.3. Nested, finite models. Let F1 ⊂ F2 ⊂ · · · be a collection of nested, finite models, and let
F̄ = ∪∞m=1Fm. We assume log |F1| > 1.

As indicated in Section 9.1, it is a good strategy to take the penalty proportional to the estimation
error. In the present context, this works as follows. Define

F(f) = Fm(f), m(f) = arg min{m : f ∈ Fm},

and for some 0 < δ < 1,

pen(f) =
16 log |F(f)|

nδ
.

In coding theory, this penalty is quite familiar: when encoding a message using an encoder from Fm,
one needs to send, in addition to the encoded message, log2 |Fm| bits to tell the receiver which encoder
was used.

Let

f̂n = arg min
f∈F̄

{
1
n

n∑
i=1

|Yi − f(xi)|2 + pen(f)

}
,

and
f∗ = arg min

f∈F̄

{
‖f − f0‖2n + pen(f)

}
.

Lemma 9.3.2. We have, for all t > 0 and 0 < δ < 1,

P
(
‖f̂n − f0‖2n > (

1 + δ

1− δ
)
{
‖f∗ − f0‖2n + pen(f∗) + 4t2/δ

})
≤ exp[−nt2].

Proof. Write down the basic inequality

‖f̂n − f0‖2n + pen(f̂n) ≤ 2
n

n∑
i=1

εi(f̂n(xi)− f∗(xi)) + ‖f∗ − f0‖2n + pen(f∗).

Define F̄j = {f : 2j < | logF(f)| ≤ 2j+1}, j = 0, 1, . . .. We have for all t > 0, using Lemma 3.8,

P

(
∃ f ∈ F̄ :

1
n

n∑
i=1

εi(f(xi)− f∗(xi)) > (8 log |F(f)|/n+ 2t2)1/2‖f − f∗‖n

)

≤
∞∑

j=0

P

(
∃ f ∈ F̄j ,

1
n

n∑
i=1

εi(f(xi)− f∗(xi)) > (2j+3/n+ 2t2)1/2‖f − f∗‖n

)

≤
∞∑

j=0

exp[2j+1 − (2j+2 + nt2)] =
∞∑

j=0

exp[−(2j+1 + nt2)]

≤
∞∑

j=0

exp[−(j + 1 + nt2)] ≤
∫ ∞

0

exp[−(x+ nt2)] = exp[−nt2].

But if
∑n

i=1 εi(f̂n(xi)− f∗(xi))/n ≤ (8 log |F(f̂n)|/n+ 2t2)1/2‖f̂n − f∗‖n, the basic inequality gives

‖f̂n − f0‖2n ≤ 2(8 log |F(f̂n)|/n+ 2t2)1/2‖f̂n − f∗‖n + ‖f∗ − f0‖2n + pen(f∗)− pen(f̂n)

≤ δ‖f̂n − f0‖2n + 16 log |F(f̂)|/(nδ)− pen(f̂) + 4t2/δ + (1 + δ)‖f∗ − f0‖2n + pen(f∗)

= δ‖f̂n − f0‖2n + 4t2/δ + (1 + δ)‖f∗ − f0‖2n + pen(f∗),

by the definition of pen(f).
tu
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9.4. General penalties. In the general case with possibly infinite model classes F , we may replace
the log-cardinality of a class by its entropy.

Definition. Let u > 0 be arbitrary and let N(u,F , dn) be the minimum number of balls with radius
u necessary to cover F . Then {H(u,F , dn) := logN(u,F , dn) : u > 0} is called the entropy of F (for
the metric dn induced by the norm ‖ · ‖n).

Recall the definition of the estimator

f̂n = arg min
f∈F̄

{
1
n

n∑
i=1

|Yi − f(xi)|2 + pen(f)

}
,

and of the noiseless version
f∗ = arg min

f∈F̄

{
‖f − f0‖2n + pen(f)

}
.

We moreover define
F(t) = {f ∈ F̄ : ‖f − f∗‖2n + pen(f) ≤ t2}, t > 0.

Consider the entropy H(·,F(t), dn) of F(t). Suppose it is finite for each t, and in fact that the square root
of the entropy is integrable, i.e. that for some continuous upper bound H̄(·,F(t), dn) of H(·,F(t), dn).
one has

Ψ(t) =
∫ t

0

√
H̄(u,F(t), dn)du <∞, ∀t > 0. (∗∗)

This means that near u = 0, the entropy H(u,F(t), dn) is not allowed to grow faster than 1/u2. As-
sumption (**) is related to asymptotic continuity of the empirical process {νn(f) : f ∈ F(t)}. If (**)
does not hold, one can still prove inequalities for the excess risk. To avoid digressions we will skip that
issue here.

Lemma 9.4.1. Suppose that Ψ(t)/t2 does not increase as t increases. There exists constants c and
c′ such that for

(•)
√
nt2n ≥ c (Ψ(tn) ∨ tn) ,

we have

E
{
‖f̂n − f0‖2n + pen(f̂n)

}
≤ 2

{
‖f∗ − f0‖2n + pen(f∗) + t2n

}
+
c′

n
.

Lemma 9.4.1 is from van de Geer (2001). Comparing it to e.g. Lemma 9.3.1, one sees that there is
no arbitrary 0 < δ < 1 involved in the statement of Lemma 9.4.1. In fact, van de Geer (2001) has fixed
δ at δ = 1/3 for simplicity.

When Ψ(t)/t2 ≤
√
n/C for all t, and some constant C, condition (•) is fulfilled if tn ≥ cn−1/2, and,

in addition, C ≥ c. In that case one indeed has overruled the variance. We stress here, that the constant
C depends on the penalty, i.e. the penalty has to be chosen carefully.

9.5. Application to the “classical” penalty. Suppose X = [0, 1]. Let F̄ be the class of functions
on [0, 1] which have derivatives of all orders. The s-th derivative of a function f ∈ F̄ on [0, 1] is denoted
by f (s). Define for a given 1 ≤ p <∞, and given smoothness s ∈ {1, 2, . . .},

Ip(f) =
∫ 1

0

|f (s)(x)|pdx, f ∈ F̄ .

We consider two cases. In Subsection 9.5.1, we fix a smoothing parameter λ > 0 and take the penalty
pen(f) = λ2Ip(f). After some calculations, we then show that in general the variance has not been
”overruled”, i.e., we do not arrive at an estimator that behaves as a noiseless version, because there still
is an additional term. However, this additional term can now be ”killed” by including it in the penalty.
It all boils down in Subsection 9.5.2 to a data dependent choice for λ, or alternatively viewed, a penalty
of the form pen(f) = λ̃2I

2
2s+1 (f), with λ̃ > 0 depending on s and n. This penalty allows one to adapt

to small values for I(f0).
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9.5.1. Fixed smoothing parameter. For a function f ∈ F̄ , we define the penalty

pen(f) = λ2Ip(f),

with a given λ > 0.
Lemma 9.5.1. The entropy integral Ψ can be bounded by

Ψ(t) ≤ c0

(
t

2ps+2−p
2ps λ−

1
ps + t

√
log(

1
λ
∨ 1)

)
t > 0.

Here, c0 is a constant depending on s and p.
Proof. This follows from the fact that

H(u, {f ∈ F̄ : I(f) ≤ 1, |f | ≤ 1}, d∞) ≤ Au−1/s, u > 0

where the constant A depends on s and p (see Birman and Solomjak (1967)). For f ∈ F(t), we have

I(f) ≤
(
t

λ

) 2
p

,

and
‖f − f∗‖n ≤ t.

We therefore may write f ∈ F(t) as f1 + f2, with |f1| ≤ I(f1) = I(f) and ‖f2 − f∗‖n ≤ t + I(f). It is
now not difficult to show that for some constant C1

H(u,F(t), ‖ · ‖n) ≤ C1

(
(
t

λ
)

2
psu−

1
s + log(

t

(λ ∧ 1)u
)
)
, 0 < u < t.

tu

Corollary 9.5.2. By applying Lemma 9.4.1, we find that for some constant c1,

E{‖f̂n − f0‖2n + λ2Ip(f̂n)} ≤ 2 min
f
{‖f − f0‖2n + λ2Ip(f)}

+c1

((
1

nλ
2

ps

) 2ps
2ps+p−2

+
log
(

1
λ ∨ 1

)
n

)
.

9.5.2. Overruling the variance in this case. For choosing the smoothing parameter λ, the above
suggests the penalty

pen(f) = min
λ

{
λ2Ip(f) + +

(
C0

nλ
2

ps

) 2ps
2ps+p−2

}
,

with C0 a suitable constant. The minimization within this penalty yields

pen(f) = C ′0n
− 2s

2s+1 I
2

2s+1 (f),

where C ′0 depends on C0 and s. From the computational point of view (in particular, when p = 2), it
may be convenient to carry out the penalized least squares as in the previous subsection, for all values
of λ, yielding the estimators

f̂n(·, λ) = arg min
f

{
1
n

n∑
i=1

|Yi − f(xi)|2 + λ2Ip(f)

}
.

Then the estimator with the penalty of this subsection is f̂n(·, λ̂n), where

λ̂n = arg min
λ>0

{
1
n

n∑
i=1

|Yi − f̂n(xi, λ)|2 +
(

C0

nλ
2

ps

) 2ps
2ps+p−2

.

}
.
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From the same calculations as in the proof of Lemma 9.5.1, one arrives at the following corollary.

Corollary 9.5.3 For an appropriate, large enough, choice of C ′0 (or C0), depending on c, p and s,
we have for a constant c′0 depending on c, c′, C ′0 (C0), p and s.

E
{
‖f̂n − f0‖2n + C ′0n

− 2s
2s+1 I

2
2s+1 (f̂n)

}
≤ 2 min

f

{
‖f − f0‖2n + C ′0n

− 2s
2s+1 I

2
2s+1 (f)

}
+
c′0
n
.

Thus, the estimator adapts to small values of I(f0). For example, when s = 1 and I(f0) = 0 (i.e.,
when f0 is the constant function), the excess risk of the estimator converges with parametric rate 1/n.
If we knew that f0 is constant, we would of course use the

∑n
i=1 Yi/n as estimator. Thus, this penalized

estimator mimics an oracle.

9.6. Exercise.

Exercise 9.1. Using Lemma 9.2.1, and the formula

EZ =
∫ ∞

0

P(Z ≥ t)dt

for a non-negative random variable Z, derive bounds for the average excess risk E‖f̂n − f0‖2n of the
estimator considered there.
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