BREAKDOWN OF COVARIANCE ESTIMATORS

by

Werner A, Stahel

RESEARCH REPORT No. 31

December 1981

FACHGRUPPE FUER STATISTIK
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE
8092 ZUERICH



Breakdown of covariance estimators

by
Werner A. Stahel
Fachgruppe fiir Statistik, Eidg. Technische Hochschule

8092 2ziirich

SUMMARY

The covariance-location model is considered as a model
generated by a group of transformations. A new variant

of Hampel's (1971) "breakdown point" is defined which
disqualifies some clearly undesirable non-invariant
estimators with high ordinary breakdown point. For esti-
mators which are invariant with respect to the transfor-
mations generating the model, the two concepts coincide.
Finally a new class of invariant covariance estiﬁators
with breakdown point 1/2 is given. The idea is to exclude
all observations that have too extreme a projection on

any direction of the observation space.



1. INTRODUCTION

Consider the problem of estimating the (variance-)covariance
matrix and location vector of a p-dimensional normal distribution.
We restrict our attention to estimators which may be written as
functionals on the space of probability distributions. The value
of such an estimator for a given sample is the value of the
functional at the empirical distribution. Most of the commonly
used estimators may be written as or approximated by a functional,
and are consistant for its value at the distribution of the

observations (compare Huber, 1981).

The breakdown point is the measure of an important aspect of
robustness of estimators. Roughly speaking, it is determined

as follows: mix a model distribution with an arbitrary distri-
bution - the "contamination" - in proportions (l-e):e .

Check whether you can move the value of the estimator (functional)
for that mixture beyond any bound just by varying the
contamination. The breakdown point is supremum over all ¢

for which this is not possible.

The classical estimators for the parameters of the p-dimensicnal
normal distribution have breakdown point zero, which indicates

their complete lack of robustness.

Maronna (1976) and Huber (1977) proposed a class of
M-estimators (for a general definition, see Huber, 1981,
Section 9.4 ). They noticed that their breakdown properties

were still unsatisfactory for higher dimensions of the



observation space: the breakdown point is less than one

over the dimension (Maronna 1976, Huber 1981, Stahel 1981).

Siegel (1979) proposed a method, named "repeated medians",
which yields an estimator with breakdown 1/2 in quite
general paramtric models. Unfortunately, it is not directly
applicable here since every element of the covariance
matrix is estimated separately, and procedures of that

kind need not to produce positive definite estimated

matrices.

The aim of this paper is to introduce a new class of
estimators with breakdown point 1/2 (Section 4). Before
doing so, I would like to discuss the notion of break-
down (section 3) in the context of a general class of
models, which may be called the "models generated by

transformations" (section 2).



2. MODELS AND INVARIANCE

The three best known statistical models, namely the location-
scale, regression, and covariance~location models, may be

subsumed under the following concept: Let
B = {B_(+;8) | oco ¢ R

be a parametrized group of transformations X% crP r and let

P° be any fixed distribution in X . Then the distributions

{P(+;6) | 98¢0} , determined by
2~ P°=)B (2;8) v P(+;0)

define a parametric model if 9w P(+;8) is one-one (compare

Frasexr, 1968).

The example discussed in this paper is the covariance-location
model: Let g = [u ,Zl p uelRp ¢+ =~ a positive definite symmetric

matrix of order p , and
Bx(x;u r Z.) = Bex+y ,

where B-BT = ¥ 1is Cholesky's factorization of ¥ (B is lower
triangular with positive diagonal). P° shall be any radial
symmetric distribution, that is, the projection
X/1X| (for [X|#0) of X onto the unit hype¢rsphere shall be
uniformly distributed, independently of the radius |Xx| ,

Avs <o

under P~ . If P is the (p-variate) standard normal, then

P(eju ,£) 1is the normal distribution with location u and



variance-covariance matrix X . (We could use any other
identified factorization ¥ = B-BT instead of Cholesky's.)
On purpose, singular covariance matrices are excluded from the

model by definition.

Let N be a group of transformations AX : X~ X and let
Ap be the transformation of distributions induced by AX .
A model is said to be invariant under A\ if AX(X) has a model

distribution whenever X has, that is, if
VA cA , ¥0e0 1 6eo with

B (P(+30)) = P(+38) .

If a model 1is generated by a group IB of transformations, it

is invariant under |B.. The covariance-location model is invariant
under the group A\ of all regular linear transformations
("affinely invariant") , and A\ is larger than the generating

group (B .

An estimator may show a corresponding invariance property:
T(P) = 6xT(A_(P)) = § .
BT (A (P))

Estimators which are invariant under the generating group B
may be defined without loss of generality by the conditions under

which P0 corresponds to the estimated value:

o

T(P) = e@)T(B;l(P;e)) = 9

(6° determined by BX(-;SO) = identity) .



3. BREAKDOWN POINT

Definition. The " (gross error) breakdown point" of an estimator

(functional) T at a distribution P is

Bge(P,T) = sup{esl| 3K(¢) kompakt, ; & with {QeU(P;e)

2D T(QEK(e))}
where U(P;ec) 1is the gross error 'neighbourhood' of P :
U(P;e) = {Q|Q=(l—e)-P+e-Q' ;r Q' any distribution}

The simplest way of discussing the breakdown of an estimator
consists in finding a sequence [Qn] in a 'neighbourhood' U(P;e)
for which T(Qn) "diverges to the edge" of o , that is

T(Qn) =0 with

VK ; © , K kompakt, 3 n, with (nznk)=b o £K) .

If such a sequence exists for a given ¢ , then Bge(P,T) < ¢ .
- Hampel (1971) coined the term "breakdown point" somewhat diffe-
rently. His notion is conceptually more satisfactory but, on the

other hand, more difficult to handle.

Huber (1981) and Stahel (1981) give the most general form of an
affinely invariant M-estimator in the covariance-location model.
They also show with the above reasoning that the breakdown point
of such estimators is typically not greater than one over the

dimension p of the observation space. (Marcnna, 1976, showed
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Bge < (p+l)_l

for a special class of such estimators; despite
these results there are, for special P? M-estimators with Bge

approaching 1/2).

On the other hand it is easy to construct coordinate dependent
estimators that achieve a higher breakdown point: eliminate

first the observations showing up as univariate outliers in any
of the p coordinates and calculate any covariance-location
estimate from the rest. Instead of being a preferable procedure,
such a rule shows a weakness of the previously defined concept of

breakdown point in the covariance-location model:

Most frequently, this model is serving to describe dependence
relations between variables or helps detecting so~called "multi-
variate" outliers. Therefore, if the majority of the points
representing a sample happen to be near a hyperplane, it is
highly desirable that this structure be detected. This idea

leads to the following concept:

Definition. The " (gross error) breakdown point at the edge”

for an estimator T and a given model is

Bge* (T) = sup{e<l| 1if 6, diverges to the edge and

QneU(P(-;en);e) s then T(Qn) diverges
to the edgel} .
In the context of the covariance-location model we require the
following: if [an is a sequence of distributions, each of

which is contained in an e-'neighbourhood' of a model distribution



P(-;un,zn) y and 1if Zn tends to a singular matrix, then
the estimated covariance matrix should also tend to a singular

matrix.

For invariant estimators in a model generated by transformations,
this new kind of breakdown coincides with the first one. For a
precise statement, it is useful to note that the group structure
of the transformations Bx[-;e] induces an operation in @

Let © be defined by § = g'og" & BX[-;BJ = Bx[Bx['iBﬂ;eﬂ .
0

6~ shall correspond to the identity, and e  to the inverse

(6 e0=0") .

Proposition. In a model generated by a group of transformations

let the operation @ have the following property: for all
K, K' & © compact, there is a K" ; 9@ , compact such that

{000'|6eK, 8'c¢K'} ¢ K" and {0 |[6eK} c K" .

Then, for any estimator invariant under the generating trans-—
formations, the breakdown point at the edge coincides with the

ordinary breakdown point.
- - -— O
Proof. 1If QneU(P(-;en);e) r then Qh = Bp(Qn;en)eU(P ;e) and

T(Qn) = 6n®T(Qn) .

If diverges whereas T(Qn) stays within a compact proper subset

On

K of @, then T(Qn) diverges, so that Bge  Bge* ., On the

other hand, let QneU(Po;&) such that T(Qn) diverges., Then



-

: _ .0
6, = T(Qn) diverges whereas T(Bp(Qn,en)) = 9 does not.

Therefore Bge* < Bge . ///

In the covariance-location model, the operation is given by
wz]eut,z')
T
= [Ben'+u, B-L'-B] , (B+BT=x) ,

and the condition of the proposition is easily verified since
Z-matrices of "K-sets" have determinants bounded away from 0

and « .,

The proposition eveokes an argument for looking at invariant
estimators with a high (ordinary) breakdown point. Clearly,
the coordinate dependent procedure mentioned above does not
improve the breakdown point at the edge, but the question
whether there are other non-invariant estimators with a high

breakdown point at the edge remains open.

It is quite interesting to look at the situation leading to a
breakdown of the affinely invariant M-estimators for ¢ = 1/p .
Let P* be the projection of P’ onto a hyperplane, and let
" symmeteozed % )
P be the distribution of |X| , X~P~ . Mix a fraction (1-1/p)

of P* on any hyperplane with a fraction 1/p of B on a

perpendicular to it, just like the figure shows

R Y

X
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If Qn approaches this distribution (while P(-;eﬁ) goes to
P*) , the estimated covariance matrix will usually approach

a multiple of the identity matrix instead of a singular one.

4. A COVARIANCE~LOCATION ESTIMATOR WITH BREAKDOWN POINT 1/2

While univariate outliers in one of the coordinates were eliminated

in the procedure mentioned above, we now exclude all observations

sticking out in any projection:

Definition. For each direction de RF , |d] =1, let L, and 8

d
be a (one-dimensional) location and scale estimator (functional)

of the distribution of the projection dT-X , XAP , respectively

(with the corresponding invariance properties), and
R(x,P) = sup {|d ex-L_ | /S .}
! d d da *

Then the "projection estimator" corresponding to L, § and a
welght function W: IRf+ R is defined as the ordinary weighted

covariance-location estimator with weights W(R(X,P)2) :

n(®) JW(R(x,P)2).x P{dx) / [W(R(X,P)Z) P (dx}

. [M(R(x,P)2) - (x=f) - (x=1) " P(dx) / [d(R(x,2)2) P(dx) ,

]

(P}
where ¢ 1is a fixed constant used %o achieve Fisher-consistency

at the normal distribution.

d
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The invariance of such estimators follows from the definition

of R(x,?) .

Proposition. Suppose that

(i) L and S have breakdown point U2 at the projection
of Po on a straight line;

(ii) W 1is poitive and bounded, 0s<W(r?)zw* , and there are
ry»0, r, and a>»0 such that
W(r?) a for r<r; and W(r®)=0 for rzr, ;

(1ii) p° has a positive density.

Then, for e<1/2 , u(Q) and £(Q) are bounded for QeU(P;e) ,
P a model distribution. If 1y is known and Ld is set to @ ,

then the breakdown point for the covariance part % is 1/2 .

For the combined estimator, I could not prove that ¢ may not

approach a singular matrix; therefore I cannot state that the

breakdown is 1/2 .

Proof. It suffices to consider P° for the model distribution.
Let e<1/2 . Because of (i), there is a b2 such that R(x)3r2
if xl>b, , regardless of the contamination. W(R(x,Q)?2) may
not vanish almost sufely (PO) because of (ii) and (iii),

whence the estimates are well defined and bounded. - It remains
to show that the smallest eigenvalue of [ is bounded awaﬁ
from O for u=0 . But since Sd has this property, there is

a b, with W(R(x,Q)2)>a for Ix!<b, and all 0eU(P°,e) ,

and by ({(ii),
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F@ex) 2 W(R(x,0)%) 0(dx) / SW(R(x,2)?) Q(dx)

u

o
o
i

2 I[x!f_bl (dT'X)z W(R(x,0)%) Q(dx) / w*

(L2) - (a/e) -/, @%-x)? p°(@x) . ///

| v

x]ib1

The maximization involved in the definition of R{(x,P) poses

a serious computational problem. Heuristic considerations show
that there may be many local maxima even if the global maximum is
much lower than these. (This is especially true if I and S are
the median and thhmedian deviation.) Since, therefore, ordinary
nonlinear programming cannot solve the problem, one could try
evaluating the function to be maximized at all points of a fine

"grid" on the hypersphere. To my knowledge, such a grid has not been

given yet; in higher dimensions, it would need very many grid

points in order to be accurately fine. (A similar problem arises

in connection with the "function plot" of Andrews (1972):

The proposed curve on the hypersphere does not pass sufficiently near

to all points on that sphere.)

A practicable solution for finite sample sizes n seems neverthe-~

less possible by adjusting the general idea of Siegel (1979):

Choose at random p indices [ik] from {1,2,...,n} and find

d perpendicular to the hyperplane through the observations with
indices [ik] « Repeat this construction m times and treat

the maximum over the m directions as the global maximum.

(a local maximization procedure could be used to improve this

preliminary solution}. In the situation mentioned above, where the
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"good" observations lie near a hyperplane, the procedure will
detect the structure if the indices [ik] select "good" observations.
exclusively for at least one of the m choices. The probability for

this is
A 1= (1-(1=e))™

where ¢ 1s the proportion of contamination in the sample, if
n/p is large.

The number m of choices necessary for p"= 0.95 is given below:

| e| .85 g1 g.3 #.5
p
2 2 2 5 11
3 2. 3 8 23
5 3. 4 17 95
ig 4 7 195 3967
24 7 24 3753 3141252

In order to get a first impression of the feasability of
the method, I run a "mini-simulation" with p=5 and 50
replicates. The distribution was constructed, like the
figure at the end of §3 shows, as a flat disk with a stick
through it:

x 1) . N (0,0.05Hx N, (0,1) , i=1,2,...,35 ;

/;E x §(0,0,0,0} , i=36,...,50 .

The projection estimator considered used the median and
median deviation/0.6745 as L and S , and a W ~func-

tion as specified by the following graph of W(u)-u

against u=r?® .
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W(u) .u

4.35 6.06 20:52

(compare to Y& percentage points). Wo consistency constant

was introduced ( c=1) . The number of trials m was 17

according to the foregoing table. In one case of the 50 ,

none of these trials happened to select only "good" observa-
tions. The following histogram for
u = log,(Z,,/ ave(Zy2,++..,Z55))

shows that this fraction was below (¥4)2? - which might be

seen as a success - in 40 of the 50 replicates.

£ 4

10/50 1

| /£ I -
/i
=10 -4 0 5 u

. T
Remark. In the context of regression, Y=f  +X+Error , Hampel
(1975, p. 380) suggests to define a very robust estimator as
the B minimizing the median deviation of the residuals,

which is equivalent to finding
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min, { med(|Y-b X-L_|) }

p!)

where Lb is the median of Y—bTX . This is a problem of
similar complexity as the one above (although it has to be
solved only once instead of n times), and the same proce-

dure should lead to a feasible solution.
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