| coef.rctglm | Methods for objects of class 'rctglm' | 
| default_learners | Creates a list of learners | 
| est | Methods for objects of class 'rctglm' | 
| estimand | Methods for objects of class 'rctglm' | 
| estimand.rctglm | Methods for objects of class 'rctglm' | 
| fit_best_learner | Find the best learner in terms of RMSE among specified learners using cross validation | 
| glm_data | Generate data simulated from a GLM | 
| options | postcard Options | 
| power_gs | Power and sample size estimation for linear models | 
| power_linear | Power and sample size estimation for linear models | 
| power_marginaleffect | Power approximation for estimating marginal effects in GLMs | 
| power_nc | Power and sample size estimation for linear models | 
| print.rctglm | Methods for objects of class 'rctglm' | 
| prog | Extract information about the fitted prognostic model | 
| prog.rctglm_prog | Extract information about the fitted prognostic model | 
| rctglm | Fit GLM and find any estimand (marginal effect) using plug-in estimation with variance estimation using influence functions | 
| rctglm_methods | Methods for objects of class 'rctglm' | 
| rctglm_with_prognosticscore | Use prognostic covariate adjustment when fitting an rctglm | 
| samplesize_gs | Power and sample size estimation for linear models | 
| variance_ancova | Power and sample size estimation for linear models |