
Package ‘BIGr’
July 21, 2025

Title Breeding Insight Genomics Functions for Polyploid and Diploid
Species

Version 0.5.5

Maintainer Alexander M. Sandercock <ams866@cornell.edu>

Description Functions developed within Breeding Insight to analyze
diploid and polyploid breeding and genetic data. 'BIGr' provides the
ability to filter variant call format (VCF) files, extract single nucleotide polymorphisms (SNPs)
from diversity arrays technology missing allele discovery count (DArT MADC) files,
and manipulate genotype data for both diploid and polyploid species. It
also serves as the core dependency for the 'BIGapp' 'Shiny' app, which
provides a user-friendly interface for performing routine genotype
analysis tasks such as dosage calling, filtering, principal component analysis (PCA),
genome-wide association studies (GWAS), and
genomic prediction. For more details about the included 'breedTools'
functions, see Funkhouser et al. (2017) <doi:10.2527/tas2016.0003>, and
the 'updog' output format, see Gerard et al. (2018) <doi:10.1534/genetics.118.301468>.

License Apache License (>= 2)

URL https://github.com/Breeding-Insight/BIGr

BugReports https://github.com/Breeding-Insight/BIGr/issues

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.4.0)

Imports parallel, dplyr, Rdpack (>= 0.7), readr (>= 2.1.5), reshape2
(>= 1.4.4), tidyr (>= 1.3.1), vcfR (>= 1.15.0), Rsamtools,
Biostrings, pwalign, janitor, quadprog, tibble

Suggests covr, spelling, rmdformats, knitr (>= 1.10), rmarkdown,
testthat (>= 3.0.0)

RdMacros Rdpack

NeedsCompilation no

1

https://doi.org/10.2527/tas2016.0003
https://doi.org/10.1534/genetics.118.301468
https://github.com/Breeding-Insight/BIGr
https://github.com/Breeding-Insight/BIGr/issues

2 calculate_Het

Author Alexander M. Sandercock [cre, aut],
Cristiane Taniguti [aut],
Josue Chinchilla-Vargas [aut],
Shufen Chen [ctb],
Manoj Sapkota [ctb],
Meng Lin [ctb],
Dongyan Zhao [ctb],
Cornell University [cph] (Breeding Insight)

Repository CRAN

Date/Publication 2025-05-19 09:00:06 UTC

Contents

calculate_Het . 2
calculate_MAF . 3
check_homozygous_trios . 4
check_ped . 6
check_replicates . 7
dosage2vcf . 8
dosage_ratios . 9
filterVCF . 10
flip_dosage . 11
get_countsMADC . 12
imputation_concordance . 13
madc2vcf_all . 14
madc2vcf_targets . 16
merge_MADCs . 17
updog2vcf . 19

Index 21

calculate_Het Calculate Observed Heterozygosity from a Genotype Matrix

Description

This function calculates the observed heterozygosity from a genotype matrix. It assumes that the
samples are the columns, and the genomic markers are in rows. Missing data should be set as NA,
which will then be ignored for the calculations. All samples must have the same ploidy.

Usage

calculate_Het(geno, ploidy)

calculate_MAF 3

Arguments

geno Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

Value

A dataframe of observed heterozygosity values for each sample

Examples

example input for a diploid
geno <- data.frame(

Sample1 = c(0, 1, 2, NA, 0),
Sample2 = c(1, 1, 2, 0, NA),
Sample3 = c(0, 1, 1, 0, 2),
Sample4 = c(0, 0, 1, 1, NA)

)
row.names(geno) <- c("Marker1", "Marker2", "Marker3", "Marker4", "Marker5")

ploidy <- 2

calculate observed heterozygosity
result <- calculate_Het(geno, ploidy)

print(result)

calculate_MAF Calculate Minor Allele Frequency from a Genotype Matrix

Description

This function calculates the allele frequency and minor allele frequency from a genotype matrix.
It assumes that the Samples are the columns, and the genomic markers are in rows. Missing data
should be set as NA, which will then be ignored for the calculations. All samples must have the
same ploidy.

Usage

calculate_MAF(df, ploidy)

Arguments

df Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

Value

A dataframe of AF and MAF values for each marker

4 check_homozygous_trios

Examples

example input for a diploid
geno <- data.frame(

Sample1 = c(0, 1, 2, NA, 0),
Sample2 = c(1, 1, 2, 0, NA),
Sample3 = c(0, 1, 1, 0, 2),
Sample4 = c(0, 0, 1, 1, NA)

)
row.names(geno) <- c("Marker1", "Marker2", "Marker3", "Marker4", "Marker5")

ploidy <- 2

calculate allele frequency
result <- calculate_MAF(geno, ploidy)

print(result)

check_homozygous_trios

Check Homozygous Loci in Trios

Description

This function analyzes homozygous loci segregation in trios (parents and progeny) using genotype
data from a VCF file. It calculates the percentage of homozygous loci in the progeny that match the
expected segregation patterns based on the tested parents.

Usage

check_homozygous_trios(
path.vcf,
ploidy = 4,
parents_candidates = NULL,
progeny_candidates = NULL,
verbose = TRUE

)

Arguments

path.vcf A string specifying the path to the VCF file containing genotype data.
ploidy An integer specifying the ploidy level of the samples. Default is 4.
parents_candidates

A character vector of parent sample names to be tested. Must be provided.
progeny_candidates

A character vector of progeny sample names to be tested. Must be provided.
verbose A logical value indicating whether to print the number of combinations tested.

Default is TRUE.

check_homozygous_trios 5

Details

This function is designed to validate the segregation of homozygous loci in trios, ensuring that the
progeny genotypes align with the expected patterns based on the parental genotypes. It requires
both parent and progeny candidates to be specified. The function validates the ploidy level and
ensures that all specified samples are present in the VCF file. The results include detailed statistics
for each combination of parents and progeny. Reciprocal comparisons (e.g., A vs. B and B vs. A)
and self-comparisons (e.g., A vs. A) are removed to avoid redundancy. Missing genotype data is
also accounted for and reported in the results.

Value

A data frame with the following columns:

• parent1: The name of the first parent in the pair.

• parent2: The name of the second parent in the pair.

• progeny: The name of the progeny sample.

• homoRef_x_homoRef_n: Number of loci where both parents are homozygous reference.

• homoRef_x_homoRef_match: Percentage of matching loci in the progeny for homozygous
reference parents.

• homoAlt_x_homoAlt_n: Number of loci where both parents are homozygous alternate.

• homoAlt_x_homoAlt_match: Percentage of matching loci in the progeny for homozygous
alternate parents.

• homoRef_x_homoAlt_n: Number of loci where one parent is homozygous reference and the
other is homozygous alternate.

• homoRef_x_homoAlt_match: Percentage of matching loci in the progeny for mixed homozy-
gous parents.

• homoalt_x_homoRef_n: Number of loci where one parent is homozygous alternate and the
other is homozygous reference.

• homoalt_x_homoRef_match: Percentage of matching loci in the progeny for mixed homozy-
gous parents (alternate-reference).

• missing: The number of loci with missing genotype data in the comparison.

Examples

Example VCF file
example_vcf <- system.file("iris_DArT_VCF.vcf.gz", package = "BIGr")

parents_candidates <- paste0("Sample_",1:10)
progeny_candidates <- paste0("Sample_",11:20)

#Check homozygous loci in trios
check_tab <- check_homozygous_trios(path.vcf = example_vcf,

ploidy = 2,
parents_candidates = parents_candidates,
progeny_candidates = progeny_candidates)

6 check_ped

check_ped Evaluate Pedigree File for Accuracy

Description

Check a pedigree file for accuracy and output suspected errors

Usage

check_ped(ped.file, seed = NULL, verbose = TRUE)

Arguments

ped.file path to pedigree text file. The pedigree file is a 3-column pedigree tab separated
file with columns labeled as id sire dam in any order

seed Optional seed for reproducibility

verbose Logical. If TRUE, print the errors to the console.

Details

check_ped takes a 3-column pedigree tab separated file with columns labeled as id sire dam in any
order and checks for:

• Ids that appear more than once in the id column

• Ids that appear in both sire and dam columns

• Direct (e.g. parent is a offspring of his own daughter) and indirect (e.g. a great grandparent is
son of its grandchild) dependencies within the pedigree.

• Individuals included in the pedigree as sire or dam but not on the id column and reports them
back with unknown parents (0).

When using check_ped, do a first run to check for repeated ids and parents that appear as sire and
dam. Once these errors are cleaned run the function again to check for dependencies as this will
provide the most accurate report.

Note: This function does not change the input file but prints any errors found in the console.

Value

A list of data.frames of error types, and the output printed to the console

Examples

##Get list with a dataframe for each error type
ped_file <- system.file("check_ped_test.txt", package="BIGr")
ped_errors <- check_ped(ped.file = ped_file,

seed = 101919)

##Access the "messy parents" dataframe result

check_replicates 7

ped_errors$messy_parents

##Get list of sample IDs with messy parents error
messy_parent_ids <- ped_errors$messy_parents$id
print(messy_parent_ids)

check_replicates Compatibility Between Samples Genotypes

Description

This function checks the compatibility between sample genotypes in a VCF file by comparing all
pairs of samples.

Usage

check_replicates(path.vcf, select_samples = NULL, verbose = TRUE)

Arguments

path.vcf A string specifying the path to the VCF file containing genotype data.

select_samples An optional character vector of sample names to be selected for comparison. If
NULL (default), all samples in the VCF file are used.

verbose A logical value indicating whether to print the number of combinations tested.
Default is TRUE.

Details

The function removes reciprocal comparisons (e.g., A vs. B and B vs. A) and self-comparisons
(e.g., A vs. A) to avoid redundancy. Compatibility is calculated as the percentage of matching
genotypes between two samples, excluding missing values. The percentage of missing genotypes
is also reported for each pair.

Value

A data frame with four columns:

• sample1: The name of the first sample in the pair.

• sample2: The name of the second sample in the pair.

• %_matching_genotypes: The percentage of compatible genotypes between the two samples.

• %_missing_genotypes: The percentage of missing genotypes in the comparison.

8 dosage2vcf

Examples

#Example VCF
example_vcf <- system.file("iris_DArT_VCF.vcf.gz", package = "BIGr")

Checking for replicates
check_tab <- check_replicates(path.vcf = example_vcf, select_samples = NULL)

dosage2vcf Convert DArTag Dosage and Counts to VCF

Description

This function will convert the DArT Dosage Report and Counts files to VCF format

Usage

dosage2vcf(dart.report, dart.counts, ploidy, output.file)

Arguments

dart.report Path to the DArT dosage report .csv file. Typically contains "Dosage Report" in
the file name.

dart.counts Path to the DArT counts .csv file. Typically contains "Counts" in the file name.

ploidy The ploidy of the species being analyzed

output.file output file name and path

Details

This function will convert the Dosage Report and Counts files from DArT into a VCF file. These
two files are received directly from DArT for a given sequencing project. The output file will be
saved to the location and with the name that is specified. The VCF format is v4.3

Value

A vcf file

Examples

Use file paths for each file on the local system

#The files are directly from DArT for a given sequencing project.
#The are labeled with Dosage_Report or Counts in the file names.

#Temp location (only for example)
output_file <- tempfile()

dosage_ratios 9

dosage2vcf(dart.report = system.file("iris_DArT_Allele_Dose_Report_small.csv", package = "BIGr"),
dart.counts = system.file("iris_DArT_Counts_small.csv", package = "BIGr"),
ploidy = 2,
output.file = output_file)

Removing the output for the example
rm(output_file)

##The function will output the converted VCF using information from the DArT files

dosage_ratios Calculate the Percentage of Each Dosage Value

Description

This function calculates the percentage of each dosage value within a genotype matrix. It assumes
that the samples are the columns, and the genomic markers are in rows. Missing data should be set
as NA, which will then be ignored for the calculations. All samples must have the same ploidy.

Usage

dosage_ratios(data, ploidy)

Arguments

data Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

Value

A data.frame with percentages of dosage values in the genotype matrix

Examples

example numeric genotype matrix for a tetraploid
n_ind <- 5
n_snps <- 10

geno <- matrix(as.numeric(sample(0:4, n_ind * n_snps, replace = TRUE)), nrow = n_snps, ncol = n_ind)
colnames(geno) <- paste0("Ind", 1:n_ind)
rownames(geno) <- paste0("SNP", 1:n_snps)
ploidy <- 4

ratio of dosage value (numeric genotypes) across samples in dataset
result <- dosage_ratios(geno, ploidy)

print(result)

10 filterVCF

filterVCF Filter a VCF file

Description

This function will filter a VCF file or vcfR object and export the updated version

Usage

filterVCF(
vcf.file,
filter.OD = NULL,
filter.BIAS.min = NULL,
filter.BIAS.max = NULL,
filter.DP = NULL,
filter.MPP = NULL,
filter.PMC = NULL,
filter.MAF = NULL,
filter.SAMPLE.miss = NULL,
filter.SNP.miss = NULL,
ploidy,
output.file = NULL

)

Arguments

vcf.file vcfR object or path to VCF file. Can be unzipped (.vcf) or gzipped (.vcf.gz).

filter.OD Updog filter
filter.BIAS.min

Updog filter (requires a value for both BIAS.min and BIAS.max)
filter.BIAS.max

Updog filter (requires a value for both BIAS.min and BIAS.max)

filter.DP Total read depth at each SNP filter

filter.MPP Updog filter

filter.PMC Updog filter

filter.MAF Minor allele frequency filter
filter.SAMPLE.miss

Sample missing data filter
filter.SNP.miss

SNP missing data filter

ploidy The ploidy of the species being analyzed

output.file output file name (optional). If no output.file name provided, then a vcfR object
will be returned.

flip_dosage 11

Details

This function will input a VCF file or vcfR object and filter based on the user defined options. The
output file will be saved to the location and with the name that is specified. The VCF format is v4.3

Value

A gzipped vcf file

Examples

Use file paths for each file on the local system

#Temp location (only for example)
output_file <- tempfile()

filterVCF(vcf.file = system.file("iris_DArT_VCF.vcf.gz", package = "BIGr"),
filter.OD = 0.5,
filter.MAF = 0.05,
ploidy = 2,
output.file = output_file)

Removing the output for the example
rm(output_file)

##The function will output the filtered VCF to the current working directory

flip_dosage Switch Dosage Values from a Genotype Matrix

Description

This function converts the dosage count values to the opposite value. This is primarily used when
converting dosage values from reference based (0 = homozygous reference) to alternate count based
(0 = homozygous alternate). It assumes that the Samples are the columns, and the genomic markers
are in rows. Missing data should be set as NA, which will then be ignored for the calculations. All
samples must have the same ploidy.

Usage

flip_dosage(df, ploidy, is.reference = TRUE)

Arguments

df Genotype matrix or data.frame

ploidy The ploidy of the species being analyzed

is.reference The dosage calls value is based on the count of reference alleles (TRUE/FALSE)

12 get_countsMADC

Value

A genotype matrix

Examples

example code

example numeric genotype matrix for a tetraploid
n_ind <- 5
n_snps <- 10

geno <- matrix(as.numeric(sample(0:4, n_ind * n_snps, replace = TRUE)), nrow = n_snps, ncol = n_ind)
colnames(geno) <- paste0("Ind", 1:n_ind)
rownames(geno) <- paste0("SNP", 1:n_snps)
ploidy <- 4

Output matrix with the allele count reversed
results <- flip_dosage(geno, ploidy, is.reference = TRUE)

print(results)

get_countsMADC Obtain Read Counts from MADC File

Description

This function takes the MADC file as input and retrieves the ref and alt counts for each sample,
and converts them to ref, alt, and size(total count) matrices for dosage calling tools. At the moment,
only the read counts for the Ref and Alt target loci are obtained while the additional loci are ignored.

Usage

get_countsMADC(madc_file)

Arguments

madc_file Path to MADC file

Value

A list of read count matrices for reference, alternate, and total read count values

imputation_concordance 13

Examples

Get the path to the MADC file
madc_path <- system.file("iris_DArT_MADC.csv", package = "BIGr")

Extract the read count matrices
counts_matrices <- get_countsMADC(madc_path)

Access the reference, alternate, and size matrices

ref_matrix <- counts_matrices$ref_matrix
alt_matrix <- counts_matrices$alt_matrix
size_matrix <- counts_matrices$size_matrix

rm(counts_matrices)

imputation_concordance

Calculate Concordance between Imputed and Reference Genotypes

Description

This function calculates the concordance between imputed and reference genotypes. It assumes
that samples are rows and markers are columns. It is recommended to use allele dosages (0, 1,
2) but will work with other formats. Missing data in reference or imputed genotypes will not be
considered for concordance if the missing_code argument is used. If a specific subset of markers
should be excluded, it can be provided using the snps_2_exclude argument.

Usage

imputation_concordance(
reference_genos,
imputed_genos,
missing_code = NULL,
snps_2_exclude = NULL,
verbose = FALSE

)

Arguments

reference_genos

A data frame containing reference genotype data, with rows as samples and
columns as markers. Dosage format (0, 1, 2) is recommended.

imputed_genos A data frame containing imputed genotype data, with rows as samples and
columns as markers. Dosage format (0, 1, 2) is recommended.

missing_code An optional value to specify missing data. If provided, loci with this value in
either dataset will be excluded from the concordance calculation.

snps_2_exclude An optional vector of marker IDs to exclude from the concordance calculation.

14 madc2vcf_all

verbose A logical value indicating whether to print a summary of the concordance re-
sults. Default is FALSE.

Details

The function identifies common samples and markers between the reference and imputed genotype
datasets. It calculates the percentage of matching genotypes for each sample, excluding missing
data and specified markers. The concordance is reported as a percentage for each sample, along
with a summary of the overall concordance distribution.

Value

A list with two elements:

• result_df: A data frame with sample IDs and their concordance percentages.

• summary_concordance: A summary of concordance percentages, including minimum, maxi-
mum, mean, and quartiles.

Examples

Example Input variables
ignore_file <- system.file("imputation_ignore.txt", package="BIGr")
ref_file <- system.file("imputation_reference.txt", package="BIGr")
test_file <- system.file("imputation_test.txt", package="BIGr")

Import files
snps = read.table(ignore_file, header = TRUE)
ref = read.table(ref_file, header = TRUE)
test = read.table(test_file, header = TRUE)

#Calculations
result <- imputation_concordance(reference_genos = ref,

imputed_genos = test,
snps_2_exclude = snps,
missing_code = 5,
verbose = FALSE)

madc2vcf_all Converts MADC file to VCF recovering target and off-target SNPs

Description

This function processes a MADC file to generate a VCF file containing both target and off-target
SNPs. It includes options for filtering multiallelic SNPs and parallel processing to improve perfor-
mance.

madc2vcf_all 15

Usage

madc2vcf_all(
madc = NULL,
botloci_file = NULL,
hap_seq_file = NULL,
n.cores = 1,
rm_multiallelic_SNP = FALSE,
multiallelic_SNP_dp_thr = 0,
multiallelic_SNP_sample_thr = 0,
alignment_score_thr = 40,
out_vcf = NULL,
verbose = TRUE

)

Arguments

madc A string specifying the path to the MADC file.
botloci_file A string specifying the path to the file containing the target IDs designed in the

bottom strand.
hap_seq_file A string specifying the path to the haplotype database fasta file.
n.cores An integer specifying the number of cores to use for parallel processing. Default

is 1.
rm_multiallelic_SNP

A logical value. If TRUE, SNPs with more than one alternative base are re-
moved. If FALSE, the thresholds specified by multiallelic_SNP_dp_thr and
multiallelic_SNP_sample_thr are used to filter low-frequency SNP alleles.
Default is FALSE.

multiallelic_SNP_dp_thr

A numeric value specifying the minimum depth by tag threshold for filtering
low-frequency SNP alleles when rm_multiallelic_SNP is FALSE. Default is
0.

multiallelic_SNP_sample_thr

A numeric value specifying the minimum number of samples threshold for filter-
ing low-frequency SNP alleles when rm_multiallelic_SNP is FALSE. Default
is 0.

alignment_score_thr

A numeric value specifying the minimum alignment score threshold. Default is
40.

out_vcf A string specifying the name of the output VCF file. If the file extension is not
.vcf, it will be appended automatically.

verbose A logical value indicating whether to print metrics and progress to the console.
Default is TRUE.

Details

The function processes a MADC file to generate a VCF file containing both target and off-target
SNPs. It uses parallel processing to improve performance and provides options to filter multial-
lelic SNPs based on user-defined thresholds. The alignment score threshold can be adjusted using

16 madc2vcf_targets

the alignment_score_thr parameter. The generated VCF file includes metadata about the pro-
cessing parameters and the BIGr package version. If the alignment_score_thr is not met, the
corresponding SNPs are discarded.

Value

This function does not return an R object. It writes the processed VCF file v4.3 to the specified
out_vcf path.

Examples

Example usage:

Sys.setenv("OMP_THREAD_LIMIT" = 2)

madc_file <- system.file("example_MADC_FixedAlleleID.csv", package="BIGr")
bot_file <- system.file("example_SNPs_DArTag-probe-design_f180bp.botloci", package="BIGr")
db_file <- system.file("example_allele_db.fa", package="BIGr")

#Temp location (only for example)
output_file <- tempfile()

madc2vcf_all(
madc = madc_file,
botloci_file = bot_file,
hap_seq_file = db_file,
n.cores = 2,
rm_multiallelic_SNP = TRUE,
multiallelic_SNP_dp_thr = 10,
multiallelic_SNP_sample_thr = 5,
alignment_score_thr = 40,
out_vcf = output_file,
verbose = TRUE

)

rm(output_file)

madc2vcf_targets Format MADC Target Loci Read Counts Into VCF

Description

This function will extract the read count information from a MADC file target markers and convert
to VCF file format.

Usage

madc2vcf_targets(madc_file, output.file, botloci_file, get_REF_ALT = FALSE)

merge_MADCs 17

Arguments

madc_file Path to MADC file

output.file output file name and path

botloci_file A string specifying the path to the file containing the target IDs designed in the
bottom strand.

get_REF_ALT if TRUE recovers the reference and alternative bases by comparing the sequences.
If more than one polymorphism are found for a tag, it is discarded.

Details

The DArTag MADC file format is not commonly supported through existing tools. This function
will extract the read count information from a MADC file for the target markers and convert it to a
VCF file format for the genotyping panel target markers only

Value

A VCF file v4.3 with the target marker read count information

A VCF file v4.3 with the target marker read count information

Examples

Load example files
madc_file <- system.file("example_MADC_FixedAlleleID.csv", package="BIGr")
bot_file <- system.file("example_SNPs_DArTag-probe-design_f180bp.botloci", package="BIGr")

#Temp location (only for example)
output_file <- tempfile()

Convert MADC to VCF
madc2vcf_targets(madc_file = madc_file,

output.file = output_file,
get_REF_ALT = TRUE,
botloci_file = bot_file)

rm(output_file)

merge_MADCs Merge MADC files

Description

If duplicated samples exist in different files, a suffix will be added at the end of the sample name. If
run_ids is defined, they are used as suffix, if not, files will be identified from 1 to number of files,
considering the order that was defined in the function.

18 merge_MADCs

Usage

merge_MADCs(..., madc_list = NULL, out_madc = NULL, run_ids = NULL)

Arguments

... one or more MADC files path

madc_list list containing path to MADC files to be merged

out_madc output merged MADC file path

run_ids vector of character defining the run ID for each file. This ID will be added as a
suffix in repeated sample ID in case they exist in different files.

Value

A data frame containing the merged MADC data. The merged file is also written to the specified
out_madc path in CSV format. Numeric columns are filled with zeros where data is missing.

Examples

First generating example MADC files
temp_dir <- tempdir()
file1_path <- file.path(temp_dir, "madc1.csv")
file2_path <- file.path(temp_dir, "madc2.csv")
out_path <- file.path(temp_dir, "merged_madc.csv")

Data for file 1: Has SampleA and SampleB
df1 <- data.frame(
AlleleID = c("chr1.1_0001|Alt_0002", "chr1.1_0001|Ref_0001", "chr1.1_0001|AltMatch_0001"),
CloneID = c("chr1.1_0001", "chr1.1_0001", "chr1.1_0001"),
AlleleSequence = c("GGG", "AAA", "TTT"),
SampleA = c(10, 8, 0),
SampleB = c(5, 4, 9),
stringsAsFactors = FALSE,
check.names = FALSE

)
write.csv(df1, file1_path, row.names = FALSE, quote = FALSE)

Data for file 2: Has SampleA (duplicate name) and SampleC, different rows
df2 <- data.frame(
AlleleID = c("chr1.1_0001|Alt_0002", "chr1.1_0001|Ref_0001", "chr1.1_0001|AltMatch_0001"),
CloneID = c("chr1.1_0001", "chr1.1_0001", "chr1.1_0001"),
AlleleSequence = c("GGG", "AAA", "TTT"),
SampleA = c(11, 7, 20),
SampleC = c(1, 2, 6),
stringsAsFactors = FALSE,
check.names = FALSE

)
write.csv(df2, file2_path, row.names = FALSE, quote = FALSE)

2. Run the merge function
Use default suffixes (.x, .y) for the duplicated "SampleA"

updog2vcf 19

merge_MADCs(madc_list = list(file1_path, file2_path),
out_madc = out_path)

updog2vcf Export Updog Results as VCF

Description

This function will convert an Updog output to a VCF file

Usage

updog2vcf(multidog.object, output.file, updog_version = NULL, compress = TRUE)

Arguments

multidog.object

updog output object with class "multidog" from dosage calling

output.file output file name and path

updog_version character defining updog package version used to generate the multidog object

compress logical. If TRUE returns a vcf.gz file

Details

When performing dosage calling for multiple SNPs using Updog, the output file contains informa-
tion for all loci and all samples. This function will convert the updog output file to a VCF file,
while retaining the information for the values that are commonly used to filter low quality and low
confident dosage calls.

Value

A vcf file

References

Gerard, D., Ferrão, L. F. V., Garcia, A. A. F., & Stephens, M. (2018). Genotyping polyploids from
messy sequencing data. Genetics, 210(3), 789-807.

20 updog2vcf

Examples

Retrieving the updog output multidog object
load(system.file("extdata", "iris-multidog.rdata", package = "BIGr"))

temp_file <- tempfile()

Convert updog to VCF, where the new VCF will be saved at the location specified in the output.file
updog2vcf(

multidog.object = mout,
output.file = temp_file,
updog_version = "0.0.0",
compress = TRUE

)

#Removing the example vcf
rm(temp_file)

Index

calculate_Het, 2
calculate_MAF, 3
check_homozygous_trios, 4
check_ped, 6
check_replicates, 7

dosage2vcf, 8
dosage_ratios, 9

filterVCF, 10
flip_dosage, 11

get_countsMADC, 12

imputation_concordance, 13

madc2vcf_all, 14
madc2vcf_targets, 16
merge_MADCs, 17

updog2vcf, 19

21

	calculate_Het
	calculate_MAF
	check_homozygous_trios
	check_ped
	check_replicates
	dosage2vcf
	dosage_ratios
	filterVCF
	flip_dosage
	get_countsMADC
	imputation_concordance
	madc2vcf_all
	madc2vcf_targets
	merge_MADCs
	updog2vcf
	Index

