
Package ‘CrownScorchTLS’
January 19, 2026

Type Package

Title Estimate Crown Scorch from Terrestrial LiDAR Scans

Version 0.1.1

Description Estimates tree crown scorch from terrestrial lidar scans col-
lected with a RIEGL vz400i. The methods follow those described in Can-
non et al. (2025, Fire Ecology 21:71, <doi:10.1186/s42408-025-00420-0>).

License GPL-3

Encoding UTF-8

URL https://github.com/jbcannon/CrownScorchTLS

BugReports https://github.com/jbcannon/CrownScorchTLS/issues

RoxygenNote 7.3.3

Imports lidR, randomForest, tidyr, Rcpp

LinkingTo Rcpp, RcppArmadillo,RcppEigen, BH

Suggests knitr, rmarkdown, dplyr, Boruta

VignetteBuilder knitr

NeedsCompilation yes

Author Jeffery Cannon [aut, cre],
Andrew Whelan [ctb]

Maintainer Jeffery Cannon <Jeffery.Cannon@jonesctr.org>

Repository CRAN

Date/Publication 2026-01-18 23:10:02 UTC

Contents
add_reflectance . 2
get_histogram . 3
predict_scorch . 4
remove_stem . 5
stemPoints . 6
stm.hough . 7

1

https://doi.org/10.1186/s42408-025-00420-0
https://github.com/jbcannon/CrownScorchTLS
https://github.com/jbcannon/CrownScorchTLS/issues

2 add_reflectance

Index 9

add_reflectance Add Reflectance column to LAS if it is missing for RIEGL vz400i

Description

Function to provide relative Reflectance for RIEGL vz400i. Lidar prediction of crown scorch is
based on relative range-corrected reflectance relative to a white reference object orthonormal to
scanner. Raw range-corrected amplitudes from RIEGL vz400i are linearly correlated to relative
intensity which usually ranges from -20 dB to 0 dB

Usage

add_reflectance(las)

Arguments

las ‘LAS‘ object from ‘lidR‘ package representing an individually segmented tree
containing an ‘Intensity‘ column representing 16-bit range- corrected amplitude
from RIEGL vz400i Terrestrial Lidar Scanner

Value

modified LAS object with Reflectance column

Examples

library(lidR)
library(CrownScorchTLS)

#download external data from github repo
url <- paste0(
"https://raw.githubusercontent.com/jbcannon/CrownScorchTLS-data/main/data/manual-clip-trees/",
"M-04-15549_post.laz")
las_file = tempfile(fileext = paste0(".", tools::file_ext(url)))
download.file(url, las_file, mode = "wb", quiet = TRUE)
las <- readLAS(las_file)

or load your own data
#las <- readLAS('C:/path/to/your/file.laz')

las = add_reflectance(las)
colnames(las@data)

get_histogram 3

get_histogram Generate histogram of Reflectance for prediction with random forests

Description

Generates a histogram of Reflectance intensities for prediction with Random Forests. Histogram
breaks can be defined.

Usage

get_histogram(las, breaks = seq(-20, 0, by = 0.2))

Arguments

las ‘LAS‘ object from ‘lidR‘ package representing an individually segmented tree
containing a ‘Reflectance‘ column representing relative reflectance from from
RIEGL vz400i Terrestrial Lidar Scanner. See ‘add_reflectance()‘

breaks sequence of breaks for histograms, default from Cannon et al. 2025.

Value

data.frame with columns intensity and density

Examples

library(lidR)
library(CrownScorchTLS)
#download external data from github repo

url <- paste0(
"https://raw.githubusercontent.com/jbcannon/CrownScorchTLS-data/main/data/manual-clip-trees/",
"M-04-15549_post.laz")
las_file = tempfile(fileext = paste0(".", tools::file_ext(url)))
download.file(url, las_file, mode = "wb", quiet = TRUE)
las <- readLAS(las_file)

or load your own data
#las <- readLAS('C:/path/to/your/file.laz')

las = add_reflectance(las)
histogram = get_histogram(las)
plot(density ~ intensity, data=histogram, xlab='Reflectance (dB)', type='l')

4 predict_scorch

predict_scorch Predict canopy scorch from ‘LAS‘ tree object following Cannon et al.
2025

Description

This function follows methods in Cannon et al. 2025 to predict crown scorch of a ‘LAS‘ object
representing an individual tree collected using a RIEGL vz400i Terrestrial Lidar system. The func-
tion uses the ’relative reflectance’ (in decibels) and predicts crown scorch using ‘randomForests‘
following Cannon et al. 2025

Usage

predict_scorch(las, model = NULL, plot = FALSE)

Arguments

las ‘LAS‘ object from ‘lidR‘ package representing an individually segmented tree
collected from RIEGL vz400i Terrestrial Lidar Scanner

model ‘randomForests‘ model object containing histogram data generated from ‘get_histogram‘
function. if ‘model‘ is ‘NULL‘, then default model from Cannon et al. 2025 is
used. But custom model may be generated.

plot Boolean indicating whether reflectance histogram should be plotted

Value

predicted scorch as numeric vector

Examples

library(lidR)
library(CrownScorchTLS)

#download external data from github repo
url <- paste0(
"https://raw.githubusercontent.com/jbcannon/CrownScorchTLS-data/main/data/manual-clip-trees/",
"M-04-15549_post.laz")

las_file = tempfile(fileext = paste0(".", tools::file_ext(url)))
download.file(url, las_file, mode = "wb", quiet = TRUE)
las <- readLAS(las_file)

or load your own data
#las <- readLAS('C:/path/to/your/file.laz')

predict_scorch(las) #using default model from Cannon et al. 2025

remove_stem 5

remove_stem Remove tree bole from ‘LAS‘

Description

This function identifies and removes tree boles using the ‘TreeLS‘ package available at https:
//github.com/tiagodc/TreeLS

Usage

remove_stem(las)

Arguments

las ‘LAS‘ object from ‘lidR‘ package representing an individually segmented tree

Value

LAS object with stem removed

Examples

library(lidR)
library(CrownScorchTLS)

#' #download external data from github repo
url <- paste0(
"https://raw.githubusercontent.com/jbcannon/CrownScorchTLS-data/main/data/manual-clip-trees/",
"M-04-15549_post.laz")
las_file = tempfile(fileext = paste0(".", tools::file_ext(url)))
download.file(url, las_file, mode = "wb", quiet = TRUE)
las <- readLAS(las_file)

or load your own data
#las <- readLAS('C:/path/to/your/file.laz')

#plot(las)
crown_only = remove_stem(las)
#plot(crown_only)

https://github.com/tiagodc/TreeLS
https://github.com/tiagodc/TreeLS

6 stemPoints

stemPoints Stem points classification

Description

Classify stem points of all trees in a normalized point cloud. Stem denoising methods are prefixed
by stm. This file includes code derived from the TreeLS package by Tiago de Conto Original
source: https://github.com/tiagodc/TreeLS License: GPL-3 The code below is copied and adapted
from TreeLS::stemPoints for the purpose of maintaining CRAN compatibility. All modifications
are clearly documented.

Usage

stemPoints(las, method = stm.hough())

Arguments

las LAS object.

method Function to classify stems. Default: stm.hough.

Value

LAS object.

Note

This function includes code derived from TreeLS::stemPoints (GPL-3 license). See source for
details. #’ @examples library(lidR) library(CrownScorchTLS)

#download external data from github repo url <- paste0("https://raw.githubusercontent.com/jbcannon/CrownScorchTLS-
data/main/data/manual-clip-trees/", "M-04-15549_post.laz") las_file = tempfile(fileext = paste0(".",
tools::file_ext(url))) download.file(url, las_file, mode = "wb", quiet = TRUE) las <- readLAS(las_file)

or load your own data #las <- readLAS(’C:/path/to/your/file.laz’)

las$Z = las$Z - min(las$Z) # Normalize las las <- stemPoints(las) # Classify stem points #plot(las,
color=’Stem’)

References

Carvalho, T. (2017). TreeLS: Tools for Terrestrial LiDAR in R. GitHub: https://github.com/tiagodc/TreeLS

stm.hough 7

stm.hough Stem denoising algorithm: Hough Transform

Description

This function is meant to be used inside stemPoints. It applies an adapted version of the Hough
Transform for circle search. Mode details are given in the sections below. This file includes code de-
rived from the TreeLS package by Tiago de Conto Original source: https://github.com/tiagodc/TreeLS
License: GPL-3 The code below is copied and adapted from TreeLS::stemPoints for the purpose of
maintaining CRAN compatibility. All modifications are clearly documented.

Usage

stm.hough(
h_step = 0.5,
max_d = 0.5,
h_base = c(1, 2.5),
pixel_size = 0.025,
min_density = 0.1,
min_votes = 3

)

Arguments

h_step numeric - height interval to perform point filtering/assignment/classification.

max_d numeric - largest tree diameter expected in the point cloud.

h_base numeric vector of length 2 - tree base height interval to initiate circle search.

pixel_size numeric - pixel side length to discretize the point cloud layers while performing
the Hough Transform circle search.

min_density numeric - between 0 and 1 - minimum point density within a pixel evaluated on
the Hough Transform - i.e. only dense point clousters will undergo circle search.

min_votes integer - Hough Transform parameter - minimum number of circle intersec-
tions over a pixel to assign it as a circle center candidate.

Value

LAS object.

LAS@data Special Fields

Meaninful new fields in the output:

• Stem: TRUE for stem points

• Segment: stem segment number (from bottom to top and nested with TreeID)

• Radius: approximate radius of the point’s stem segment estimated by the Hough Transform -
always a multiple of the pixel_size

8 stm.hough

• Votes: votes received by the stem segment’s center through the Hough Transform

#’

Adapted Hough Transform

The Hough Transform circle search algorithm used in TreeLS applies a constrained circle search
on discretized point cloud layers. Tree-wise, the circle search is recursive, in which the search for
circle parameters of a stem section is constrained to the feature space of the stem section underneath
it. Initial estimates of the stem’s feature space are performed on a baselise stem segment - i.e. a low
height interval where a tree’s bole is expected to be clearly visible in the point cloud. The algorithm
is described in detail by Conto et al. (2017).

This adapted version of the algorithm is very robust against outliers, but not against forked or
leaning stems.

Note

This function includes code derived from TreeLS::stemPoints (GPL-3 license). See source for
details.

References

Carvalho, T. (2017). TreeLS: Tools for Terrestrial LiDAR in R. GitHub: https://github.com/tiagodc/TreeLS

Olofsson, K., Holmgren, J. & Olsson, H., 2014. Tree stem and height measurements using terrestrial
laser scanning and the RANSAC algorithm. Remote Sensing, 6(5), pp.4323–4344.

Conto, T. et al., 2017. Performance of stem denoising and stem modelling algorithms on single tree
point clouds from terrestrial laser scanning. Computers and Electronics in Agriculture, v. 143, p.
165-176.

Index

add_reflectance, 2

get_histogram, 3

LAS, 6, 7

predict_scorch, 4

remove_stem, 5

stemPoints, 6, 7
stm.hough, 6, 7

9

	add_reflectance
	get_histogram
	predict_scorch
	remove_stem
	stemPoints
	stm.hough
	Index

