Type: | Package |
Title: | Generalized Farlie-Gumbel-Morgenstern Copula |
Version: | 1.0.4 |
Date: | 2019-12-11 |
Author: | Jia-Han Shih |
Maintainer: | Jia-Han Shih <tommy355097@gmail.com> |
Description: | Compute bivariate dependence measures and perform bivariate competing risks analysis under the generalized Farlie-Gumbel-Morgenstern (FGM) copula. See Shih and Emura (2018) <doi:10.1007/s00180-018-0804-0> and Shih and Emura (2019) <doi:10.1007/s00362-016-0865-5> for details. |
Depends: | cmprsk, compound.Cox, joint.Cox |
License: | GPL-2 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.0.0 |
Repository: | CRAN |
NeedsCompilation: | no |
Packaged: | 2019-12-11 14:12:56 UTC; Tommy |
Date/Publication: | 2019-12-11 16:30:25 UTC |
Generalized Farlie-Gumbel-Morgenstern Copula
Description
Compute bivariate dependence measures and perform bivariate competing risks analysis under the generalized Farlie-Gumbel-Morgenstern (FGM) copula. See Shih and Emura (2016, 2018) for details.
Details
The functions in this package are based on latent failure time models with competing risks in Shih and Emura (2018). However, they can be adapted to dependent censoring models in Emura and Chen (2018). See MLE.GFGM.spline
for example.
Author(s)
Jia-Han Shih
Maintainer: Jia-Han Shih <tommy355097@gmail.com>
References
Shih J-H, Emura T (2016) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, doi: 10.1007/s00362-016-0865-5.
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, doi: 10.1007/s00180-018-0804-0.
Emura T, Chen Y-H (2018) Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, in press.
The Cramer-von Mises type statistics under the generalized FGM copula
Description
Compute the Cramer-von Mises type statistics under the generalized FGM copula.
Usage
CvM.GFGM.BurrIII(
t.event,
event1,
event2,
Alpha,
Beta,
Gamma,
g1,
g2,
p,
q,
theta,
eta = 0,
Sdist.plot = TRUE
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
Alpha |
Positive shape parameter for the Burr III margin (failure cause 1). |
Beta |
Positive shape parameter for the Burr III margin (failure cause 2). |
Gamma |
Common positive shape parameter for the Burr III margins. |
g1 |
Splines coefficients for the failure cause 1. |
g2 |
Splines coefficients for the failure cause 2. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
eta |
Location parameter with default value 0. |
Sdist.plot |
Plot sub-distribution functions if |
Details
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
Value
S.overall |
Cramer-von Mises type statistic based on parametric and non-parametric estimators of sub-distribution functions for testing overall model. |
S.GFGM |
Cramer-von Mises type statistic based on semi-parametric and non-parametric estimators of sub-distribution functions for testing the generalized FGM copula. |
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
See Also
Dependence.GFGM
, MLE.GFGM.BurrIII
, MLE.GFGM.spline
Examples
con = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
152,184,400,424,88,152,184)
cen = rep(630,44)
t.event = c(con,uncon,cen)
event1 = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2 = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))
library(GFGM.copula)
#res.BurrIII = MLE.GFGM.BurrIII(t.event,event1,event2,5000,3,2,0.75,eta = -71)
#Alpha = res.BurrIII$Alpha[1]
#Beta = res.BurrIII$Beta[1]
#Gamma = res.BurrIII$Gamma[1]
#res.spline = MLE.GFGM.spline(t.event,event1,event2,3,2,0.75)
#g1 = res.spline$g1
#g2 = res.spline$g2
#CvM.GFGM.BurrIII(t.event,event1,event2,Alpha,Beta,Gamma,g1,g2,3,2,0.75,eta = -71)
Bivariate dependence measures under the generalized FGM copula
Description
Compute Kendall's tau and Spearman's rho with their boundaries under the generalized FGM copula.
Usage
Dependence.GFGM(p, q, theta)
Arguments
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1. |
theta |
Copula parameter with restricted range. |
Details
The admissible range of theta
(\theta
) is
-\min\bigg\{1,\frac{1}{p^{2q}}\bigg(\frac{1+pq}{q-1}\bigg)^{2q-2}\bigg\} \leq \theta \leq \frac{1}{p^{q}}\bigg(\frac{1+pq}{q-1}\bigg)^{q-1}.
See also Shih and Emura (2019) for details.
Value
theta |
Dependence parameter. |
tau |
Kendall's tau. |
rho |
Spearman's rho. |
References
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
Examples
library(GFGM.copula)
Dependence.GFGM(3,2,0.75)
Generate samples from the generalized FGM copula with the Burr III margins
Description
Generate samples from the generalized FGM copula with the Burr III margins.
Usage
GFGM.BurrIII(n, p, q, theta, Alpha, Beta, Gamma)
Arguments
n |
Sample size. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1. |
theta |
Copula parameter with restricted range. |
Alpha |
Positive shape parameter for the Burr III margin. |
Beta |
Positive shape parameter for the Burr III margin. |
Gamma |
Common positive shape parameter for the Burr III margins. |
Details
The admissible range of theta
is given in Dependence.GFGM
.
Value
X |
|
Y |
|
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
See Also
Examples
library(GFGM.copula)
GFGM.BurrIII(5,3,2,0.75,1,1,1)
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins
Description
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins.
Usage
MLE.GFGM.BurrIII(
t.event,
event1,
event2,
D,
p,
q,
theta,
eta = 0,
Gamma.0 = 1,
epsilon.0 = 1e-05,
epsilon.1 = 1e-10,
epsilon.2 = 1e-300,
r.1 = 1,
r.2 = 1,
r.3 = 1
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
D |
Positive tunning parameter in the NR algorithm. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
eta |
Location parameter with default value 0. |
Gamma.0 |
Initial guess for the common shape parameter gamma with default value 1. |
epsilon.0 |
Positive tunning parameter in the NR algorithm with default value 1e-5. |
epsilon.1 |
Positive tunning parameter in the NR algorithm with default value 1e-10. |
epsilon.2 |
Positive tunning parameter in the NR algorithm with default value 1e-300. |
r.1 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.2 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.3 |
Positive tunning parameter in the NR algorithm with default value 1. |
Details
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
Value
n |
Sample size. |
count |
Iteration number. |
random |
Randomization number. |
Alpha |
Positive shape parameter for the Burr III margin (failure cause 1). |
Beta |
Positive shape parameter for the Burr III margin (failure cause 2). |
Gamma |
Common shape parameter for the Burr III margins. |
MeanX |
Mean lifetime due to failure cause 1. |
MeanY |
Mean lifetime due to failure cause 2. |
logL |
Log-likelihood value under the fitted model. |
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
See Also
Examples
con = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
152,184,400,424,88,152,184)
cen = rep(630,44)
t.event = c(con,uncon,cen)
event1 = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2 = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))
library(GFGM.copula)
MLE.GFGM.BurrIII(t.event,event1,event2,5000,3,2,0.75,eta = -71)
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the marginal distributions approximated by splines
Description
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the marginal distributions approximated by splines.
Usage
MLE.GFGM.spline(t.event, event1, event2, p, q, theta, h.plot = TRUE)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
h.plot |
Plot hazard functions if |
Details
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
To adapt our functions to dependent censoring models in Emura and Chen (2018), one can simply set event2
= 1-event1
.
Value
n |
Sample size. |
g1 |
Maximum likelihood estimator of the splines coefficients for the failure cause 1. |
g2 |
Maximum likelihood estimator of the splines coefficients for the failure cause 2. |
g1.var |
Covariance matrix of splines coefficients estimates for the failure cause 1. |
g2.var |
Covariance matrix of splines coefficients estimates for the failure cause 2. |
References
Emura T, Chen Y-H (2018) Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore.
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
See Also
Examples
con = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
152,184,400,424,88,152,184)
cen = rep(630,44)
t.event = c(con,uncon,cen)
event1 = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2 = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))
library(GFGM.copula)
MLE.GFGM.spline(t.event,event1,event2,3,2,0.75)
Sub-distribution functions under the generalized FGM copula with the Burr III margins
Description
Sub-distribution functions under the generalized FGM copula with the Burr III margins.
Usage
Sdist.GFGM.BurrIII(time, Alpha, Beta, Gamma, p, q, theta, eta = 0)
Arguments
time |
Vector of times. |
Alpha |
Positive shape parameter for the Burr III margin (failure cause 1). |
Beta |
Positive shape parameter for the Burr III margin (failure cause 2). |
Gamma |
Common positive shape parameter for the Burr III margins. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
eta |
Location parameter with default value 0. |
Details
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
Value
time |
Failure times |
Sdist.1 |
Probability of an object fails due to the failure cause 1. |
Sdist.2 |
Probability of an object fails due to the failure cause 2. |
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
See Also
MLE.GFGM.BurrIII
, Dependence.GFGM
Examples
library(GFGM.copula)
Sdist.GFGM.BurrIII(c(1:5),1,1,1,3,2,0.75,eta = 1)
Sub-distribution functions under the generalized FGM copula with the marginal distributions approximated by splines
Description
Sub-distribution functions under the generalized FGM copula with the marginal distributions approximated by splines.
Usage
Sdist.GFGM.spline(time, g1, g2, tmin, tmax, p, q, theta)
Arguments
time |
Vector of times. |
g1 |
Splines coefficients for the failure cause 1. |
g2 |
Splines coefficients for the failure cause 2. |
tmin |
Lower bound of times. |
tmax |
upper bound of times. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
Details
The splines coefficients g1
and g2
are usually computed by MLE.GFGM.spline
.
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
Value
time |
Failure times |
Sdist.1 |
Probability of an object fails due to the failure cause 1. |
Sdist.2 |
Probability of an object fails due to the failure cause 2. |
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
See Also
MLE.GFGM.spline
, Dependence.GFGM
Examples
library(GFGM.copula)
Sdist.GFGM.spline(seq(1,5,1),rep(0.1,5),rep(0.1,5),1,5,3,2,0.75)