| Type: | Package |
| Title: | Lindley Power Series Distribution |
| Version: | 1.0.1 |
| Author: | Saralees Nadarajah & Yuancheng Si, Peihao Wang |
| Maintainer: | Yuancheng Si <siyuanchengman@gmail.com> |
| Description: | Computes the probability density function, the cumulative distribution function, the hazard rate function, the quantile function and random generation for Lindley Power Series distributions, see Nadarajah and Si (2018) <doi:10.1007/s13171-018-0150-x>. |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.1.1 |
| Imports: | stats, lamW(≥ 1.3.0) |
| NeedsCompilation: | no |
| Packaged: | 2021-07-10 13:16:35 UTC; siyua |
| Repository: | CRAN |
| Date/Publication: | 2021-07-10 16:50:02 UTC |
LindleyBinomial
Description
distribution function, density function, hazard rate function, quantile function, random number generation
Usage
plindleybinomial(x, lambda, theta, m, log.p = FALSE)
dlindleybinomial(x, lambda, theta, m)
hlindleybinomial(x, lambda, theta, m)
qlindleybinomial(p, lambda, theta, m)
rlindleybinomial(n, lambda, theta, m)
Arguments
x |
vector of positive quantiles. |
lambda |
positive parameter |
theta |
positive parameter. |
m |
number of trails. |
log.p |
logical; If |
p |
vector of probabilities. |
n |
number of observations. |
Details
Probability density function
f(x)=\frac{\theta\lambda^2}{(\lambda+1)A(\theta)}(1+x)exp(-\lambda x)A^{'}(\phi)
Cumulative distribution function
F(x)=\frac{A(\phi)}{A(\theta)}
Quantile function
F^{-1}(p)=-1-\frac{1}{\lambda}-\frac{1}{\lambda}W_{-1}\left\{\frac{\lambda+1}{exp(\lambda+1)}\left[\frac{1}{\theta}A^{-1}\{pA(\theta)\}-1\right]\right\}
Hazard rate function
h(x)=\frac{\theta\lambda^2}{1+\lambda}(1+x)exp(-\lambda x)\frac{A^{'}(\phi)}{A(\theta)-A(\phi)}
where W_{-1} denotes the negative branch of the Lambert W function. A(\theta)=\sum_{n=1}^{\infty}a_n\theta^{n} is given by specific power series distribution.
Note that x>0, \lambda>0 for all members in Lindley Power Series distribution.
0<\theta<1 for Lindley-Geometric distribution, Lindley-logarithmic distribution, Lindley-Negative Binomial distribution.
\theta>0 for Lindley-Poisson distribution, Lindley-Binomial distribution.
Value
plindleybinomial gives the culmulative distribution function
dlindleybinomial gives the probability density function
hlindleybinomial gives the hazard rate function
qlindleybinomial gives the quantile function
rlindleybinomial gives the random number generatedy by distribution
Invalid arguments will return an error message.
Author(s)
Saralees Nadarajah & Yuancheng Si siyuanchengman@gmail.com
Peihao Wang
References
Si, Y. & Nadarajah, S., (2018). Lindley Power Series Distributions. Sankhya A, 9, pp1-15.
Ghitany, M. E., Atieh, B., Nadarajah, S., (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, (4), 49-506.
Jodra, P., (2010). Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Mathematics and Computers in Simulation, 81, (4), 851-859.
Lindley, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B. Methodological, 20, 102-107.
Lindley, D. V., (1965). Introduction to Probability and Statistics from a Bayesian View-point, Part II: Inference. Cambridge University Press, New York.
Examples
set.seed(1)
lambda = 1
theta = 0.5
n = 10
m = 10
x <- seq(from = 0.1,to = 6,by = 0.5)
p <- seq(from = 0.1,to = 1,by = 0.1)
plindleybinomial(x, lambda, theta, m, log.p = FALSE)
dlindleybinomial(x, lambda, theta, m)
hlindleybinomial(x, lambda, theta, m)
qlindleybinomial(p, lambda, theta, m)
rlindleybinomial(n, lambda, theta, m)
LindleyGeometric
Description
distribution function, density function, hazard rate function, quantile function, random number generation
Usage
plindleygeometric(x, lambda, theta, log.p = FALSE)
dlindleygeometric(x, lambda, theta)
hlindleygeometric(x, lambda, theta)
qlindleygeometric(p, lambda, theta)
rlindleygeometric(n, lambda, theta)
Arguments
x |
vector of positive quantiles. |
lambda |
positive parameter |
theta |
positive parameter. |
log.p |
logical; If |
p |
vector of probabilities. |
n |
number of observations. |
Details
Probability density function
f(x)=\frac{\theta\lambda^2}{(\lambda+1)A(\theta)}(1+x)exp(-\lambda x)A^{'}(\phi)
Cumulative distribution function
F(x)=\frac{A(\phi)}{A(\theta)}
Quantile function
F^{-1}(p)=-1-\frac{1}{\lambda}-\frac{1}{\lambda}W_{-1}\left\{\frac{\lambda+1}{exp(\lambda+1)}\left[\frac{1}{\theta}A^{-1}\{pA(\theta)\}-1\right]\right\}
Hazard rate function
h(x)=\frac{\theta\lambda^2}{1+\lambda}(1+x)exp(-\lambda x)\frac{A^{'}(\phi)}{A(\theta)-A(\phi)}
where W_{-1} denotes the negative branch of the Lambert W function. A(\theta)=\sum_{n=1}^{\infty}a_n\theta^{n} is given by specific power series distribution.
Note that x>0, \lambda>0 for all members in Lindley Power Series distribution.
0<\theta<1 for Lindley-Geometric distribution, Lindley-logarithmic distribution, Lindley-Negative Binomial distribution.
\theta>0 for Lindley-Poisson distribution, Lindley-Binomial distribution.
Value
plindleygeometric gives the culmulative distribution function
dlindleygeometric gives the probability density function
hlindleygeometric gives the hazard rate function
qlindleygeometric gives the quantile function
rlindleygeometric gives the random number generatedy by distribution
Invalid arguments will return an error message.
Author(s)
Saralees Nadarajah & Yuancheng Si siyuanchengman@gmail.com
Peihao Wang
References
Si, Y. & Nadarajah, S., (2018). Lindley Power Series Distributions. Sankhya A, 9, pp1-15.
Ghitany, M. E., Atieh, B., Nadarajah, S., (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, (4), 49-506.
Jodra, P., (2010). Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Mathematics and Computers in Simulation, 81, (4), 851-859.
Lindley, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B. Methodological, 20, 102-107.
Lindley, D. V., (1965). Introduction to Probability and Statistics from a Bayesian View-point, Part II: Inference. Cambridge University Press, New York.
Examples
set.seed(1)
lambda = 1
theta = 0.5
n = 10
x <- seq(from = 0.1,to = 6,by = 0.5)
p <- seq(from = 0.1,to = 1,by = 0.1)
plindleygeometric(x, lambda, theta, log.p = FALSE)
dlindleygeometric(x, lambda, theta)
hlindleygeometric(x, lambda, theta)
qlindleygeometric(p, lambda, theta)
rlindleygeometric(n, lambda, theta)
LindleyLogarithmic
Description
distribution function, density function, hazard rate function, quantile function, random number generation
Usage
plindleylogarithmic(x, lambda, theta, log.p = FALSE)
dlindleylogarithmic(x, lambda, theta)
hlindleylogarithmic(x, lambda, theta)
qlindleylogarithmic(p, lambda, theta)
rlindleylogarithmic(n, lambda, theta)
Arguments
x |
vector of positive quantiles. |
lambda |
positive parameter |
theta |
positive parameter. |
log.p |
logical; If |
p |
vector of probabilities. |
n |
number of observations. |
Details
Probability density function
f(x)=\frac{\theta\lambda^2}{(\lambda+1)A(\theta)}(1+x)exp(-\lambda x)A^{'}(\phi)
Cumulative distribution function
F(x)=\frac{A(\phi)}{A(\theta)}
Quantile function
F^{-1}(p)=-1-\frac{1}{\lambda}-\frac{1}{\lambda}W_{-1}\left\{\frac{\lambda+1}{exp(\lambda+1)}\left[\frac{1}{\theta}A^{-1}\{pA(\theta)\}-1\right]\right\}
Hazard rate function
h(x)=\frac{\theta\lambda^2}{1+\lambda}(1+x)exp(-\lambda x)\frac{A^{'}(\phi)}{A(\theta)-A(\phi)}
where W_{-1} denotes the negative branch of the Lambert W function. A(\theta)=\sum_{n=1}^{\infty}a_n\theta^{n} is given by specific power series distribution.
Note that x>0,\lambda>0 for all members in Lindley Power Series distribution.
0<\theta<1 for Lindley-Geometric distribution,Lindley-logarithmic distribution,Lindley-Negative Binomial distribution.
\theta>0 for Lindley-Poisson distribution,Lindley-Binomial distribution.
Value
plindleylogarithmic gives the culmulative distribution function
dlindleylogarithmic gives the probability density function
hlindleylogarithmic gives the hazard rate function
qlindleylogarithmic gives the quantile function
rlindleylogarithmic gives the random number generatedy by distribution
Invalid arguments will return an error message.
Author(s)
Saralees Nadarajah & Yuancheng Si siyuanchengman@gmail.com
Peihao Wang
References
Si, Y. & Nadarajah, S., (2018). Lindley Power Series Distributions. Sankhya A, 9, pp1-15.
Ghitany, M. E., Atieh, B., Nadarajah, S., (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, (4), 49-506.
Jodra, P., (2010). Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Mathematics and Computers in Simulation, 81, (4), 851-859.
Lindley, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B. Methodological, 20, 102-107.
Lindley, D. V., (1965). Introduction to Probability and Statistics from a Bayesian View-point, Part II: Inference. Cambridge University Press, New York.
Examples
set.seed(1)
lambda = 1
theta = 0.5
n = 10
x <- seq(from = 0.1,to = 6,by = 0.5)
p <- seq(from = 0.1,to = 1,by = 0.1)
plindleylogarithmic(x, lambda, theta, log.p = FALSE)
dlindleylogarithmic(x, lambda, theta)
hlindleylogarithmic(x, lambda, theta)
qlindleylogarithmic(p, lambda, theta)
rlindleylogarithmic(n, lambda, theta)
LindleyNegativeBinomial
Description
distribution function, density function, hazard rate function, quantile function, random number generation
Usage
plindleynb(x, lambda, theta, m, log.p = FALSE)
dlindleynb(x, lambda, theta, m)
qlindleynb(p, lambda, theta, m)
rlindleynb(n, lambda, theta, m)
Arguments
x |
vector of positive quantiles. |
lambda |
positive parameter |
theta |
positive parameter. |
m |
target for number of successful trials. Must be strictly positive, need not be integer. |
log.p |
logical; If |
p |
vector of probabilities. |
n |
number of observations. |
Details
Probability density function
f(x)=\frac{\theta\lambda^2}{(\lambda+1)A(\theta)}(1+x)exp(-\lambda x)A^{'}(\phi)
Cumulative distribution function
F(x)=\frac{A(\phi)}{A(\theta)}
Quantile function
F^{-1}(p)=-1-\frac{1}{\lambda}-\frac{1}{\lambda}W_{-1}\left\{\frac{\lambda+1}{exp(\lambda+1)}\left[\frac{1}{\theta}A^{-1}\{pA(\theta)\}-1\right]\right\}
Hazard rate function
h(x)=\frac{\theta\lambda^2}{1+\lambda}(1+x)exp(-\lambda x)\frac{A^{'}(\phi)}{A(\theta)-A(\phi)}
where W_{-1} denotes the negative branch of the Lambert W function. A(\theta)=\sum_{n=1}^{\infty}a_n\theta^{n} is given by specific power series distribution.
Note that x>0,\lambda>0 for all members in Lindley Power Series distribution.
0<\theta<1 for Lindley-Geometric distribution,Lindley-logarithmic distribution,Lindley-Negative Binomial distribution.
\theta>0 for Lindley-Poisson distribution,Lindley-Binomial distribution.
Value
plindleynb gives the culmulative distribution function
dlindleynb gives the probability density function
hlindleynb gives the hazard rate function
qlindleynb gives the quantile function
rlindleynb gives the random number generatedy by distribution
Invalid arguments will return an error message.
Author(s)
Saralees Nadarajah & Yuancheng Si siyuanchengman@gmail.com
Peihao Wang
References
Si, Y. & Nadarajah, S., (2018). Lindley Power Series Distributions. Sankhya A, 9, pp1-15.
Ghitany, M. E., Atieh, B., Nadarajah, S., (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, (4), 49-506.
Jodra, P., (2010). Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Mathematics and Computers in Simulation, 81, (4), 851-859.
Lindley, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B. Methodological, 20, 102-107.
Lindley, D. V., (1965). Introduction to Probability and Statistics from a Bayesian View-point, Part II: Inference. Cambridge University Press, New York.
Examples
set.seed(1)
lambda = 1
theta = 0.5
n = 10
m = 10
x <- seq(from = 0.1,to = 6,by = 0.5)
p <- seq(from = 0.1,to = 1,by = 0.1)
plindleynb(x, lambda, theta, m, log.p = FALSE)
dlindleynb(x, lambda, theta, m)
hlindleynb(x, lambda, theta, m)
qlindleynb(p, lambda, theta, m)
rlindleynb(n, lambda, theta, m)
LindleyPoisson
Description
distribution function, density function, hazard rate function, quantile function, random number generation
Usage
plindleypoisson(x, lambda, theta, log.p = FALSE)
dlindleypoisson(x, lambda, theta)
hlindleypoisson(x, lambda, theta)
qlindleypoisson(p, lambda, theta)
rlindleypoisson(n, lambda, theta)
Arguments
x |
vector of positive quantiles. |
lambda |
positive parameter |
theta |
positive parameter. |
log.p |
logical; If |
p |
vector of probabilities. |
n |
number of observations. |
Details
Probability density function
f(x)=\frac{\theta\lambda^2}{(\lambda+1)A(\theta)}(1+x)exp(-\lambda x)A^{'}(\phi)
Cumulative distribution function
F(x)=\frac{A(\phi)}{A(\theta)}
Quantile function
F^{-1}(p)=-1-\frac{1}{\lambda}-\frac{1}{\lambda}W_{-1}\left\{\frac{\lambda+1}{exp(\lambda+1)}\left[\frac{1}{\theta}A^{-1}\{pA(\theta)\}-1\right]\right\}
Hazard rate function
h(x)=\frac{\theta\lambda^2}{1+\lambda}(1+x)exp(-\lambda x)\frac{A^{'}(\phi)}{A(\theta)-A(\phi)}
where W_{-1} denotes the negative branch of the Lambert W function. A(\theta)=\sum_{n=1}^{\infty}a_n\theta^{n} is given by specific power series distribution.
Note that x>0, \lambda>0 for all members in Lindley Power Series distribution.
0<\theta<1 for Lindley-Geometric distribution, Lindley-logarithmic distribution, Lindley-Negative Binomial distribution.
\theta>0 for Lindley-Poisson distribution, Lindley-Binomial distribution.
Value
plindleypoisson gives the culmulative distribution function
dlindleypoisson gives the probability density function
hlindleypoisson gives the hazard rate function
qlindleypoisson gives the quantile function
rlindleypoisson gives the random number generatedy by distribution
Invalid arguments will return an error message.
Author(s)
Saralees Nadarajah & Yuancheng Si siyuanchengman@gmail.com
Peihao Wang
References
Si, Y. & Nadarajah, S., (2018). Lindley Power Series Distributions. Sankhya A, 9, pp1-15.
Ghitany, M. E., Atieh, B., Nadarajah, S., (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, (4), 49-506.
Jodra, P., (2010). Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Mathematics and Computers in Simulation, 81, (4), 851-859.
Lindley, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B. Methodological, 20, 102-107.
Lindley, D. V., (1965). Introduction to Probability and Statistics from a Bayesian View-point, Part II: Inference. Cambridge University Press, New York.
Examples
set.seed(1)
lambda = 1
theta = 0.5
n = 10
x <- seq(from = 0.1,to = 6,by = 0.5)
p <- seq(from = 0.1,to = 1,by = 0.1)
plindleypoisson(x, lambda, theta, log.p = FALSE)
dlindleypoisson(x, lambda, theta)
hlindleypoisson(x, lambda, theta)
qlindleypoisson(p, lambda, theta)
rlindleypoisson(n, lambda, theta)