Type: | Package |
Title: | Power Garima-Generalized Extreme Value Distribution |
Version: | 0.1.0 |
Language: | en-US |
Maintainer: | Kittipong Klinjan <kittipong_k@rmutt.ac.th> |
Description: | Density, distribution function, quantile function, and random generation function based on Kittipong Klinjan,Tipat Sottiwan and Sirinapa Aryuyuen (2024)<doi:10.28919/cmbn/8833>. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | LambertW,stats |
RoxygenNote: | 7.3.2 |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2024-11-25 04:00:26 UTC; ThinkPad X1 |
Author: | Kittipong Klinjan [cre, aut], Tipat Sottiwan [aut], Sirinapa Aryuyuen [aut] |
Repository: | CRAN |
Date/Publication: | 2024-11-26 12:40:08 UTC |
The probability density function (PDF) of the power Garima-generalized extreme value distribution(PGaGEV).
Description
This function calculated the PDF of PGaGEV distribution.
Usage
dPGaGEV(x, mu, sigma, xi, a, b, c)
Arguments
x |
vector of quantiles.There are three cases as follows: 1) if xi>0, x=[(mu-sigma)/xi,Inf].2) if xi=0, x=[-Inf,Inf].3) if xi<0, x=[-Inf,(mu-sigma)/xi]. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
Details
The PDF of PGaGEV distribution based on the research paper in references.
Value
the PDF of PGaGEV distribution.
References
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
Examples
dPGaGEV(1.2,2,1,0.5,0.5,0.5,0.5) #xi=0.5
dPGaGEV(1.2,2,1,0,0.5,0.5,0.5) #xi=0
dPGaGEV(1.2,2,1,-0.5,0.5,0.5,0.5) #xi=-0.5
x=c(1.2,1.3,1.4)
dPGaGEV(x,2,1,0.5,0.5,0.5,0.5) #xi=0.5
The cumulative distribution function (CDF) of the power Garima-generalized extreme value distribution(PGaGEV).
Description
This function calculated the CDF of PGaGEV distribution.
Usage
pPGaGEV(x, mu, sigma, xi, a, b, c)
Arguments
x |
vector of quantiles.There are three cases as follows: 1) if xi>0, x=[(mu-sigma)/xi,Inf].2) if xi=0, x=[-Inf,Inf].3) if xi<0, x=[-Inf,(mu-sigma)/xi]. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
Details
The CDF of PGaGEV distribution based on the research paper in references.
Value
the CDF of PGaGEV distribution.
References
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
Examples
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0.5
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=0
pPGaGEV(1.2,2,1,0.5,0.5,0.5,.5) #xi=-0.5
x=c(1.2,1.3,1.4)
pPGaGEV(x,2,1,0.5,0.5,0.5,0.5) #xi=0.5
The quantile function of the power Garima-generalized extreme value distribution(PGaGEV).
Description
This function calculated the quantile values of PGaGEV distribution.
Usage
qPGaGEV(p, mu, sigma, xi, a, b, c)
Arguments
p |
vector of probabilities. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
Details
The quantile function of PGaGEV distribution based on the research paper in references.
Value
the quantile values of PGaGEV distribution.
References
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
Examples
qPGaGEV(0.1639605,2,1,0.5,0.5,0.5,0.5)
x=c(1.2,1.3,1.4)
p <- pPGaGEV(x,2,1,0.5,0.5,0.5,0.5)
qPGaGEV(p,2,1,0.5,0.5,0.5,0.5)
The random generating function of the power Garima-generalized extreme value distribution(PGaGEV).
Description
This function generatings random numbers of PGaGEV distribution.
Usage
rPGaGEV(n, mu, sigma, xi, a, b, c)
Arguments
n |
number of observations. |
mu |
location parameter. |
sigma |
scale parameter number 1. |
xi |
shape parameter number 1. |
a |
scale parameter number 2. |
b |
scale parameter number 3. |
c |
shape parameter number 2. |
Details
The n random value of PGaGEV distribution based on the research paper in references.
Value
the quantile values of PGaGEV distribution.
References
Kittipong Klinjan, Tipat Sottiwan and Sirinapa Aryuyuen (2024). Extreme value analysis with new generalized extreme value distributions: a case study for risk analysis on pm2.5 and pm10 in pathum thani, thailand, Commun. Math. Biol. Neurosci. 2024, 2024:100.DOI:10.28919/cmbn/8833.
Examples
rPGaGEV(30,2,1,0.5,0.5,0.5,0.5) #xi>0
rPGaGEV(30,2,1,-0.5,0.5,0.5,0.5) #xi<0