--- title: "Applying Spatio-Temporal Model to Crop Yield Data" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to STCYP} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(STCYP) ``` This example demonstrates the fitting of a spatio-temporal model to predict crop yields in Chatham-Kent, Ontario, and compares the predictions to real data. ``` ```{r} bsts_1 <- fit_bsts(y_train[[medoid_names[1]]], z_train[[medoid_names[1]]], lags = 2, MCMC.iter = 10) # Chatham-Kent bsts_2 <- fit_bsts(y_train[[medoid_names[2]]], z_train[[medoid_names[2]]], lags = 2, MCMC.iter = 10) # Wellington bsts_3 <- fit_bsts(y_train[[medoid_names[3]]], z_train[[medoid_names[3]]], lags = 1, MCMC.iter = 10) # Lambton list_bsts <- list(bsts_1, bsts_2, bsts_3) GaussianForecast3 <- simul_fun_noGEV_3d(nsim = 10, n_train = n_train, n_test = n_test, copula = copula_list[1], init_params = init_params_full, fn = log_likelihood_noGEV_3d, u1 = u[[1]], u2 = u[[2]], u3 = u[[3]], z1_train = z_train[[1]], z2_train = z_train[[2]], z3_train = z_train[[3]], z1_test = z_test[[1]], z2_test = z_test[[2]], z3_test = z_test[[3]], X_t = (z_train[[1]] + z_train[[2]] + z_train[[3]])/3, y1_test = y_test[[1]], y2_test = y_test[[2]], y3_test = y_test[[3]], BSTS_1 = bsts_1, BSTS_2 = bsts_2, BSTS_3 = bsts_3) ChathamKent_copula_plot <- plot_forecast(forecast = GaussianForecast3[[2]], data_train = y_train$`Chatham-Kent`, data_test = y_test$`Chatham-Kent`, time = time, quant_high = 0.95, quant_low = 0.05, observed_col = "#96BA66", forecast_col = "#CF9FFF", title = "Chatham-Kent - Gaussian copula forecast") print(ChathamKent_copula_plot) ```