brms.mmrm 1.1.1
- Use FEV data in usage vignette.
- Show how to visualize prior vs posterior in the usage vignette.
- Add a centerargument tobrms_formula.default()and explain intercept parameter
interpretation concerns (#128).
brms.mmrm 1.1.0
- Add brm_marginal_grid().
- Show posterior samples of sigmainbrm_marginal_draws()andbrm_marginal_summaries().
- Allow outcome = "response"withreference_time = NULL. Sometimes raw response is analyzed
but the data has no baseline time point.
- Preserve factors in brm_data()and encourage ordered
factors for the time variable (#113).
- Add brm_data_chronologize()to ensure the correctness
of the time variable.
- Do not drop columns in brm_data(). This helpsbrm_data_chronologize()operate correctly after calls tobrm_data().
- Add new elements brms.mmrm_dataandbrms.mmrm_formulato thebrmsfitted model
object returned bybrm_model().
- Take defaults dataandformulafrom the
above inbrm_marginal_draws().
- Set the default value of effect_sizetoattr(formula, "brm_allow_effect_size").
- Remove defaults from some arguments to brm_data()and
document examples.
- Deprecate the roleargument ofbrm_data()in favor ofreference_time(#119).
- Add a new model_missing_outcomesinbrm_formula()to optionally impute missing values during
model fitting as described at https://paulbuerkner.com/brms/articles/brms_missings.html
(#121).
- Add a new imputedargument to accept amicemultiply imputed dataset (“mids”) inbrm_model()(#121).
- Add a summary()method forbrm_transform_marginal()objects.
- Do not recheck the rank of the formula in
brm_transform_marginal().
- Support constrained longitudinal data analysis (cLDA) for
informative prior archetypes brm_archetype_cells(),brm_archetype_effects(),brm_archetype_successive_cells(), andbrm_archetype_successive_effects()(#125). We cannot
support cLDA forbrm_archetype_average_cells()orbrm_archetype_average_effects()because then some
parameters would no longer be averages of others.
brms.mmrm 1.0.1
- Handle outcome NAs inget_draws_sigma().
- Improve summary()messages for informative prior
archetypes.
- Rewrite the archetypes.Rmdvignette using the FEV
dataset from themmrmpackage.
- Add brm_prior_template().
brms.mmrm 1.0.0
New features
- Add informative prior archetypes (#96, #101).
- Add [brm_formula_sigma()] to allow more flexibility for modeling
standard deviations as distributional parameters (#102). Due to the
complexities of computing marginal means of standard deviations in rare
scenarios, [brm_marginal_draws()] does not return effect size if
[brm_formula_sigma()] uses baseline or covariates.
Guardrails
to ensure the appropriateness of marginal mean estimation
- Require a new formulaargument inbrm_marginal_draws().
- Change class name "brm_data"to"brms_mmrm_data"to align with other class names.
- Create a special "brms_mmrm_formula"class to wrap
around the model formula. The class ensures that formulas passed to the
model were created bybrms_formula(), and the attributes
store the user’s choice of fixed effects.
- Create a special "brms_mmrm_model"class for fitted
model objects. The class ensures that fitted models were created bybrms_model(), and the attributes store the"brms_mmrm_formula"object in a way thatbrmsitself cannot modify.
- Deprecate use_subgroupinbrm_marginal_draws(). The subgroup is now always part of
the reference grid when declared inbrm_data(). To
marginalize over subgroup, declare it incovariatesinstead.
- Prevent overplotting multiple subgroups in
brm_plot_compare().
- Update the subgroup vignette to reflect all the changes above.
Custom estimation of
marginal means
- Implement a new brm_transform_marginal()to transform
model parameters to marginal means (#53).
- Use brm_transform_marginal()instead ofemmeansinbrm_marginal_draws()to derive
posterior draws of marginal means based on posterior draws of model
parameters (#53).
- Explain the custom marginal mean calculation in a new
inference.Rmdvignette.
- Rename methods.Rmdtomodel.Rmdsinceinference.Rmdalso discusses methods.
Other improvements
- Extend brm_formula()andbrm_marginal_draws()to optionally model homogeneous
variances, as well as ARMA, AR, MA, and compound symmetry correlation
structures.
- Restrict brm_model()to continuous families with
identity links.
- In brm_prior_simple(), deprecate thecorrelationargument in favor of individual
correlation-specific arguments such asunstructuredandcompound_symmetry.
- Ensure model matrices are full rank (#99).
brms.mmrm 0.1.0
- Deprecate brm_simulate()in favor ofbrm_simulate_simple()(#3). The latter has a more specific
name to disambiguate it from other simulation functions, and its
parameterization conforms to the one in the methods vignette.
- Add new functions for nuanced simulations:
brm_simulate_outline(),brm_simulate_continuous(),brm_simulate_categorical()(#3).
- In brm_model(), remove rows with missing responses.
These rows are automatically removed bybrmsanyway, and by
handling by handling this inbrms.mmrm, we avoid a
warning.
- Add subgroup analysis functionality and validate the subgroup model
with simulation-based calibration (#18).
- Zero-pad numeric indexes in simulated data so the levels sort as
expected.
- In brm_data(), deprecatelevel_controlin
favor ofreference_group.
- In brm_data(), deprecatelevel_baselinein
favor ofreference_time.
- In brm_formula(), deprecate argumentseffect_baseline,effect_group,effect_time,interaction_baseline, andinteraction_groupin favor ofbaseline,group,time,baseline_time, andgroup_time, respectively.
- Propagate values in the missingcolumn inbrm_data_change()such that a value in the change from
baseline is labeled missing if either the baseline response is missing
or the post-baseline response is missing.
- Change the names in the output of brm_marginal_draws()to be more internally consistent and fit better with the addition of
subgroup-specific marginals (#18).
- Allow brm_plot_compare()andbrm_plot_draws()to select the x axis variable and faceting
variables.
- Allow brm_plot_compare()to choose the primary
comparison of interest (source of the data, discrete time, treatment
group, or subgroup level).
brms.mmrm 0.0.2
- Fix grammatical issues in the description.
brms.mmrm 0.0.1