## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(cgmguru) library(iglu) ## ----data-load---------------------------------------------------------------- data(example_data_5_subject) data(example_data_hall) ## ----grid-analysis------------------------------------------------------------ grid_result <- grid(example_data_5_subject, gap = 15, threshold = 130) # View the number of GRID events detected per subject print(grid_result$episode_counts) # View the start points of GRID events print(head(grid_result$episode_start)) # See the identified points in the time series grid_points <- head(grid_result$grid_vector) print(grid_points) ## ----grid-sensitive----------------------------------------------------------- sensitive_result <- grid(example_data_5_subject, gap = 10, threshold = 120) print(head(sensitive_result$episode_counts)) ## ----grid-large--------------------------------------------------------------- large_grid <- grid(example_data_hall, gap = 15, threshold = 130) print(paste("Detected", sum(large_grid$episode_counts$episode_counts), "episodes")) ## ----plot-grid, fig.height=4-------------------------------------------------- library(ggplot2) subid <- example_data_5_subject$id[1] subdata <- example_data_5_subject[example_data_5_subject$id == subid, ] substarts <- grid_result$episode_start[grid_result$episode_start$id == subid, ] plot <- ggplot(subdata, aes(x = time, y = gl)) + geom_line() + geom_point(data = substarts, aes(x = time, y = gl), color = 'red', size = 2) + labs(title = paste("GRID Events for Subject", subid), y = "Glucose (mg/dL)") plot