## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi = 80 ) ## ----setup-------------------------------------------------------------------- library(colocboost) ## ----load-example-data-------------------------------------------------------- # Loading the Dataset data(Ind_5traits) names(Ind_5traits) Ind_5traits$true_effect_variants ## ----multiple-matched--------------------------------------------------------- # Extract genotype (X) and phenotype (Y) data X <- Ind_5traits$X Y <- Ind_5traits$Y # Run colocboost with matched data res <- colocboost(X = X, Y = Y) # Identified CoS res$cos_details$cos$cos_index # Plotting the results colocboost_plot(res) ## ----single-x----------------------------------------------------------------- # Extract a single SNP (as a vector) X_single <- X[[1]] # First SNP for all individuals # Run colocboost res <- colocboost(X = X_single, Y = Y) # Identified CoS res$cos_details$cos$cos_index ## ----superset-X--------------------------------------------------------------- # Create phenotype with different samples - remove 50 samples trait 1 and trait 3. X_superset <- X[[1]] Y_remove <- Y Y_remove[[1]] <- Y[[1]][-sample(1:length(Y[[1]]),50), , drop=F] Y_remove[[3]] <- Y[[3]][-sample(1:length(Y[[3]]),50), , drop=F] # Run colocboost res <- colocboost(X = X_superset, Y = Y_remove) # Identified CoS res$cos_details$cos$cos_index ## ----dictionary-mapped-------------------------------------------------------- # Create a simple dictionary for demonstration purposes X_arbitrary <- X[c(1,3)] dict_YX = cbind(c(1:5), c(1,1,2,2,2)) # Display the dictionary dict_YX # Run colocboost res <- colocboost(X = X_arbitrary, Y = Y, dict_YX = dict_YX) # Identified CoS res$cos_details$cos$cos_index