## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.height = 6, fig.align = "center" ) ## ----setup-------------------------------------------------------------------- library(detectnorm) ## ----beta_example------------------------------------------------------------- library(detectnorm) # Situations using beta distributions set.seed(32411) #Using Fleishman's method to generate non-normal data dat1 <- rnonnorm(n = 1000, mean = 0, sd = 1, skew = 2, kurt = 5)$dat hist(dat1) psych::describe(dat1) #Suppose we don't know about the raw data result <- desbeta(vmean = mean(dat1), vsd = sd(dat1),lo = min(dat1), hi = max(dat1), showFigure = TRUE, rawdata = dat1) result ## ----trun_example------------------------------------------------------------- library(detectnorm) #Truncated normal distribution set.seed(34120) dat2 <- truncnorm::rtruncnorm(n = 1000, a = 0, b = 14, mean = 4, sd = 3) psych::describe(dat2) destrunc(vmean=mean(dat2), vsd=sd(dat2), lo=0, hi=14, rawdata = dat2, showFigure = TRUE) ## ----betameta_example--------------------------------------------------------- library(detectnorm) # examine the meta-analysis dataset by simulating extremely non-normal distribution # population mean1 = 1, mean2 = 1.5, sd1 = sd2=1, skewness1 = 4, kurtosis2 = 2, skewness2=-4, kurtosis2=2 data("beta_mdat") beta1 <- detectnorm(m1i = m1,sd1i = sd1,n1i = n1, hi1i = hi1,lo1i = lo1,m2i = m2,sd2i = sd2,n2i = n2, hi2i = hi2,lo2i=lo2,distri = "beta", data = beta_mdat) head(beta1) #compare the sample skewness and estimated skewness using beta distribution mean(beta1$skew1)#sample skewness calculated from the sample in group 1 mean(beta1$g1_skewness) #estimated using beta in group 1 mean(beta1$skew2) #sample skewness calculated from the sample in group 2 mean(beta1$g2_skewness)#estimated using beta in group 2 ## ----trunmeta_example--------------------------------------------------------- library(detectnorm) data("trun_mdat") head(trun_mdat) trun1 <- detectnorm(m1i = m1,sd1i = sd1,n1i = n1, hi1i = 4,lo1i = 0,m2i = m2,sd2i = sd2,n2i = n2, hi2i = 4,lo2i= 0,distri = "truncnorm", data = trun_mdat) mean(trun1$skew1)#sample skewness calculated from the sample in group 1 mean(trun1$g1_skewness)#estimated using truncnorm in group 1 mean(trun1$skew2)#sample skewness calculated from the sample in group 2 mean(trun1$g2_skewness)#estimated using truncnorm in group 2