## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(dilp) ## ----The simplest workflow---------------------------------------------------- # If the dataset is in good shape, this is all you need to do dilp_results <- dilp(McAbeeExample) lma_results <- lma(McAbeeExample) # This just grabs the key data points from the results data.frame( Site = c("McAbee H1", "McAbee H2"), MAT_MLR = dilp_results$results$MAT.MLR, MAT_SLR = dilp_results$results$MAT.SLR, MAP_MLR = dilp_results$results$MAP.MLR, MAP_SLR = dilp_results$results$MAP.SLR, site_mean_LMA = lma_results$lowe_site_mean_lma$value ) ## ----DiLP result elements----------------------------------------------------- # Elements of DiLP results: print(paste0("dilp_results$", names(dilp_results))) ## ----Check errors------------------------------------------------------------- dilp_results$errors ## ----Check outliers----------------------------------------------------------- dilp_results$outliers ## ----Check the final results-------------------------------------------------- dilp_results$results ## ----Check CCA---------------------------------------------------------------- dilp_cca(dilp_results) ## ----LMA results elements----------------------------------------------------- lma_results <- lma(McAbeeExample) print(paste0("lma_results$", names(lma_results))) ## ----------------------------------------------------------------------------- lma_results$species_mean_lma ## ----------------------------------------------------------------------------- # Royer Site Mean LMA lma_results$royer_site_mean_lma ## ----------------------------------------------------------------------------- # Lowe Site Mean LMA lma_results$lowe_site_mean_lma ## ----------------------------------------------------------------------------- # Lowe Site Variance LMA lma_results$lowe_site_variance_lma ## ----------------------------------------------------------------------------- temp_slr(McAbeeExample, regression = "Peppe2018") ## ----------------------------------------------------------------------------- precip_slr(McAbeeExample, regression = "Wilf1998") ## ----------------------------------------------------------------------------- temp_slr(McAbeeExample, slope = 0.290, constant = 1.320, error = 5)