## ----eval=FALSE--------------------------------------------------------------- # ## Install from CRAN # install.packages("dsdp") ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Import dsdp library(dsdp) ## ----eval=TRUE---------------------------------------------------------------- ## Import ggplot2 if necessary. library(ggplot2) ## ----eval=TRUE---------------------------------------------------------------- ## Create gaussmodel object from a data set mix2gauss$n200 gm1 <- gaussmodel(data=mix2gauss$n200) ## ----eval=FALSE--------------------------------------------------------------- # ## Create gaussmodel object from a data set mix2gaussHist$n200p and # ## its frequencies mix2gaussHist$n200f # gm2 <- gaussmodel(mix2gaussHist$n200p, mix2gaussHist$n200f) ## ----eval=TRUE---------------------------------------------------------------- ## Display the summary of a data set summary(gm1) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- ## Draw a histogram of the data set plot(gm1) ## ----eval=FALSE--------------------------------------------------------------- # ## Output is omitted for brevity # plot(gm1, bins=50) # ``` --> # # ### Providing the set of parameters # Before estimation, we need to provide a set of parameters, # means, standard deviations, and degrees of polynomials, # to compute the coefficients of # polynomials. # ## ---- eval=TRUE--------------------------------------------------------------- ## A vector of degrees of polynomials deglist <- c(2, 4, 6) ## A vector of means in Gaussian distributions mulist <- c(-0.5, 0, 0.5) ## A vector of standard deviations in Gaussian distributions sdlist <- c(0.75, 1.0, 1.25) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity gm1 <- estimate(gm1, deglist=deglist, mulist=mulist, sdlist=sdlist, scaling=TRUE) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(gm1, nmax=5, estonly=TRUE) ## ----eval=FALSE, results="hide", message=FALSE-------------------------------- # ## This is demonstration for recomputation # ## Not Executed # gm1 <- estimate(gm1, deglist=deglist, mulist=mulist, sdlist=sdlist, scaling=TRUE, # recompute=TRUE, stepsize=c(0.4, 0.2)) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(gm1) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(gm1, scaling=TRUE) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity gm1 <- estimate(gm1, c(4, 6, 8), seq(0, 0.5, by=0.1), seq(0.5, 1, by=0.1), scaling=TRUE) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(gm1, nmax=5, estonly=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(gm1) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity gm1 <- estimate(gm1, c(4, 6, 8), seq(0, 0.2, by=0.05), seq(0.6, 0.8, by=0.05), scaling=TRUE) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(gm1, nmax=5, estonly=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(gm1) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity gm1 <- estimate(gm1, c(4, 6, 8), seq(0, 0.2, by=0.025), seq(0.7, 0.8, by=0.01), scaling=TRUE) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(gm1, nmax=5, estonly=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(gm1) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(gm1, cum=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- x <- seq(-4, 4, by=0.1) ## Compute the density of 1st estimate y_pdf <- func(gm1, x, n=1) ## Compute the cumulative distribution of 1st estimate y_cdf <- func(gm1, x, cdf=TRUE, n=1) ## ----eval=TRUE---------------------------------------------------------------- em1 <- expmodel(mixexpgamma$n200) ## ----eval=FALSE--------------------------------------------------------------- # em2 <- expmodel(mixExpGammaHist$n800p, mixExpGammaHist$n800f) ## ----eval=TRUE---------------------------------------------------------------- ## Display the summary of a data set summary(em1) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- ## Draw a histogram of the data set plot(em1) ## ---- eval=TRUE--------------------------------------------------------------- ## A vector of degrees of polynomials deglist <- c(2, 3, 4) ## A vector of rate parameters of exponential distributions lmdlist <- c(0.5, 1, 2, 4) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity em1 <- estimate(em1, deglist=deglist, lmdlist=lmdlist) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(em1, nmax=5, estonly=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(em1) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity em1 <- estimate(em1, c(3, 4, 5, 6), c(1, 2, 4, 8)) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(em1, nmax=5, estonly=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(em1) ## ----eval=TRUE, results="hide", message=FALSE--------------------------------- ## Do estimation ## Output messages are suppressed for brevity em1 <- estimate(em1, c(5, 6), seq(3, 4, by=0.25)) ## ----eval=TRUE---------------------------------------------------------------- ## Show the summary of results up to 5 summary(em1, nmax=5, estonly=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(em1) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- plot(em1, cum=TRUE) ## ---- eval=TRUE, out.height="80%", out.width="70%"---------------------------- x <- seq(0, 14, by=0.1) ## Compute the density of 1st estimate y_pdf <- func(em1, x, n=1) ## Compute the cumulative distribution of 1st estimate y_cdf <- func(em1, x, cdf=TRUE, n=1)