## ----example-data------------------------------------------------------------- library(dsrTest) # the data are in `downs.mi` data("downs.mi", package = "dsrTest") # Birth order 5 + b5 <- downs.mi[downs.mi$BirthOrder == 5, ] # Gamma Method with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "gamma")) # Gamma Mid-p with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "gamma", control = list(midp = TRUE))) # Dobson (exact) with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "dobson")) # Dobson (Mid-p) with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "dobson", control = list(midp = TRUE))) # Asymptotic (no transformation) with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "asymptotic")) # Asymptotic (log transformation) with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "asymptotic", control = list(trans = "log"))) # Beta Method with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "beta")) # Approximate Bootstrap Method with(b5, dsrTest(Cases, Births, Standard, mult = 1e5, method = "bootstrap")) ## ----summaries---------------------------------------------------------------- # A list of methods to implement methods_list <- list( gamma = list( list(wmtype = "max"), list(midp = TRUE), list(wmtype = "tcz"), list(wmtype = "mean"), list(wmtype = "minmaxavg")), asymptotic = list( list(trans = "none"), list(trans = "log"), list(trans = "loglog"), list(trans = "logit")), dobson = list( list(midp = FALSE), list(midp = TRUE)), beta = list( list(wmtype = "none"), list(wmtype = "tcz"), list(wmtype = "mean"), list(wmtype = "minmaxavg"), list(wmtype = "max")), bootstrap = list(list()) ) # split out to allow call to mapply methods <-rep(names(methods_list), times = lengths(methods_list)) controls <- do.call(c, unname(methods_list)) all_methods <- mapply(dsrTest, method = methods, control = controls, MoreArgs = list(mult = 1e5, x = b5$Cases, n = b5$Births, w = b5$Standard), SIMPLIFY = FALSE) # create some "short" names control_types <- unlist(controls) control_names <- c(gsub("midp=FALSE", "Exact CI", gsub("=TRUE", "", sprintf("[%s=%s]", names(control_types), control_types))), "") names(all_methods) <- paste(methods, control_names) # combine CI into one data.frame results <- do.call(rbind,lapply(all_methods, function(data) data.frame( estimate = data$estimate, lci = data$conf.int[1], uci = data$conf.int[2]))) # and display knitr::kable(results, digits = 3)