eFCM: Exponential Factor Copula Model
Implements the exponential Factor Copula Model (eFCM) of Castro-Camilo, D. and Huser, R. (2020) for spatial extremes, with tools for dependence estimation, tail inference, and visualization. The package supports likelihood-based inference, Gaussian process modeling via Matérn covariance functions, and bootstrap uncertainty quantification. See Castro-Camilo and Huser (2020) <doi:10.1080/01621459.2019.1647842>.
Version: |
1.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
Rcpp, nsRFA, ismev, fields, mnormt, numDeriv, pbmcapply, boot, progress |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
knitr, rmarkdown, testthat (≥ 3.0.0) |
Published: |
2025-09-09 |
DOI: |
10.32614/CRAN.package.eFCM |
Author: |
Mengran Li [aut, cre],
Daniela Castro-Camilo [aut] |
Maintainer: |
Mengran Li <m.li.3 at research.gla.ac.uk> |
License: |
GPL (≥ 3) |
NeedsCompilation: |
yes |
CRAN checks: |
eFCM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=eFCM
to link to this page.