Type: | Package |
Title: | Evaluation of 3D Meteorological and Air Quality Models |
Version: | 1.11 |
Date: | 2025-06-02 |
Description: | Provides tools for post-process, evaluate and visualize results from 3d Meteorological and Air Quality models against point observations (i.e. surface stations) and grid (i.e. satellite) observations. |
Maintainer: | Daniel Schuch <underschuch@gmail.com> |
License: | MIT + file LICENSE |
Imports: | terra, ncdf4, utils |
Suggests: | knitr, riem, rmarkdown, testthat (≥ 3.0.0) |
Encoding: | UTF-8 |
BugReports: | https://github.com/Schuch666/eva3dm/issues/ |
RoxygenNote: | 7.3.2 |
Depends: | R (≥ 3.5.0) |
URL: | https://schuch666.github.io/eva3dm/ |
Config/testthat/edition: | 3 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2025-06-02 22:34:27 UTC; schuch |
Author: | Daniel Schuch |
Repository: | CRAN |
Date/Publication: | 2025-06-02 23:00:01 UTC |
eva3dm: Evaluation of 3D Meteorological and Air Quality Models
Description
Provides tools for post-process, evaluate and visualize results from 3d Meteorological and Air Quality models against point observations (i.e. surface stations) and grid (i.e. satellite) observations.
Author(s)
Maintainer: Daniel Schuch underschuch@gmail.com (ORCID)
See Also
Useful links:
Returns the common columns
Description
results of 'd01 in d02' style syntax
Usage
x %IN% y
Arguments
x |
data.frame |
y |
data.frame or character string |
Value
data.frame with common columns or a cropped SpatRaster
Note
A message is always displayed to keep easy to track and debug issues (with the results and the evaluation process).
Can be used to crop rast objects, such as arguments of sat() function
See Also
See select
for selection based on time.
Examples
times <- seq(as.POSIXct('2024-01-01',tz = 'UTC'),
as.POSIXct('2024-01-02',tz = 'UTC'),
by = 'hour')
randon_stuff <- rnorm(25,10)
observation <- data.frame(date = times,
site_1 = randon_stuff,
site_3 = randon_stuff,
site_4 = randon_stuff,
site_5 = randon_stuff,
site_6 = randon_stuff,
site_7 = randon_stuff)
model_d01 <- data.frame(date = times,
site_1=randon_stuff+1,
site_2=randon_stuff+2,
site_3=randon_stuff+3,
site_4=randon_stuff+4)
model_d02 <- data.frame(date = times,
site_1=randon_stuff-1,
site_3=randon_stuff-3)
# multiline
model_d01_in_d02 <- model_d01 %IN% model_d02
eva(mo = model_d01_in_d02, ob = observation, rname = 'd01 in d02')
# or single line
eva(mo = model_d01 %IN% model_d02, ob = observation, rname = 'd01 in d02')
# or
eva(mo = model_d01, ob = observation %IN% model_d02, rname = 'd01 in d02')
Combine stats and site list to overlay plot
Description
combines the stats (from individual station evaluation) and site list in a SpatVector using row.names
Usage
stat %at% site
Arguments
stat |
data.frame with stats or other variable (containing row.names and other variables) |
site |
data.frame with site list (containing row.names, lat and lon) |
Value
SpatVector (terra package)
Examples
sites <- data.frame(lat = c(-22.72500,-23.64300,-20.34350),
lon = c(-47.34800,-46.49200,-40.31800),
row.names = c('Americana','SAndre','VVIbes'),
stringsAsFactors = F)
model<- readRDS(paste0(system.file("extdata",package="eva3dm"),"/model.Rds"))
obs <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/obs.Rds"))
# evaluation by station
stats <- eva(mo = model, ob = obs, site = "Americana")
stats <- eva(mo = model, ob = obs, site = "SAndre",table = stats)
stats <- eva(mo = model, ob = obs, site = "VVIbes",table = stats)
# evaluation using all stations
stats <- eva(mo = model, ob = obs, site = "ALL", table = stats)
print(stats)
geo_stats <- stats %at% sites
print(geo_stats)
Read and write attributes on a NetCDF file
Description
Read and write metadata information of a NetCDF files
Usage
atr(file = NA, var = "?", att = NA, action = "get", value = NA, verbose = TRUE)
Arguments
file |
file name |
var |
variable name, 0 to global and "?" to show options |
att |
attribute names (NA for get all attnames) |
action |
"get" (default), "write" or "print" (return the value) of an attribute |
value |
value to write |
verbose |
display additional information |
Value
string with the NetCDF attribute value
Examples
nc <- paste0(system.file("extdata",package="eva3dm"),'/wrfinput_d01')
atr(nc,0)
atr(nc,'Times')
atr(nc,'XLAT')
atr(nc,'XLONG')
atr(nc,'XLONG','MemoryOrder')
atr(nc,'XLONG','description')
atr(nc,'XLONG','units')
atr(nc,'XLONG','stagger')
atr(nc,'XLONG','FieldType')
Calculate categorical statistics in related to a threshold
Description
Calculate traditional statistics related to a threshold
Usage
cate(
model,
observation,
threshold,
cutoff = NA,
nobs = 8,
rname,
to.plot = FALSE,
col = "#4444bb",
pch = 19,
lty = 3,
lcol = "#333333",
lim,
verbose = TRUE,
...
)
Arguments
model |
numeric vector with paired model data |
observation |
numeric vector with paired observation data |
threshold |
reference value |
cutoff |
(optionally the maximum) valid value for observation |
nobs |
minimum number of observations |
rname |
row name |
to.plot |
TRUE to plot a scatter-plot |
col |
color for points |
pch |
pch of points |
lty |
lty of threshold lines |
lcol |
col of threshold lines |
lim |
limit for x and y |
verbose |
display additional information |
... |
arguments passed to plot |
Value
a data.frame including: Accuracy (A); Critical Success Index (CSI); Probability of Detection (POD); Bias(B); False Alarm Ratio (FAR); Heidke Skill Score (HSS); Pearce skill Score (PSS) in
References
Yu, S., Mathur, R., Schere, K., Kang, D., Pleim, J., Young, J., ... & Rao, S. T. (2008). Evaluation of real‐time PM2. 5 forecasts and process analysis for PM2. 5 formation over the eastern United States using the Eta‐CMAQ forecast model during the 2004 ICARTT study. Journal of Geophysical Research: Atmospheres, 113(D6).
Examples
data <- 0.02 * 1:100
set.seed(666)
model <- abs(rnorm(100,0.01))
oldpar <- par(pty="s")
cate(model = model, observation = data, threshold = 1,
to.plot = TRUE, rname = 'example')
par(oldpar)
Calculate daily mean, min or max
Description
function to calculate daily mean, min or max of a data.frame
Usage
daily(
data,
time = "date",
var,
stat = mean,
min_offset = 0,
hour_offset = 0,
numerical = TRUE,
verbose = TRUE
)
Arguments
data |
data.frame with time column and variable columns to be processed |
time |
name of the time column (default is date) in POSIXct |
var |
name of the columns to be calculated |
stat |
function of the statistics to calculate (default is mean) |
min_offset |
minutes of observation from previous hour (default is 0) |
hour_offset |
hours of observation from previous day (default is 0) |
numerical |
TRUE (default) include only numerical columns |
verbose |
display additional information |
Value
data.frame with time and the daily mean, min or max
Examples
# in case there is connection issue
load_data <- function(cond) {
message(paste("conection issue, loading pre-downloaded data"))
DATA <- readRDS(paste0(system.file("extdata",package="eva3dm"),
"/riem_OAKB_jan_2012.Rds"))
return(DATA)
}
sites <- c("OAKB")
for(site in sites){
cat('Trying to download METAR from:',site,'...\n')
DATA <- tryCatch(riem::riem_measures(station = sites,
date_start = "2012-01-01",
date_end = "2012-02-01"),
error = load_data)
}
data_daily_mean <- daily(DATA,time = 'valid')
data_daily_min <- daily(DATA[1:7],time = 'valid',stat = min)
data_daily_max <- daily(DATA[1:7],time = 'valid',stat = max)
Model statistical evaluation
Description
Statistical (or categorical) evaluation from 2 data.frames. The input data.frames (model and observation) must contain a "date" column (containing POSIXlt). The function perform some simple case tests and perform the time pairing of observations and model data and can calculate the statistical evaluation or categorical evaluation.
Usage
eva(
mo,
ob,
rname = site,
table = NULL,
site = "ALL",
wd = FALSE,
fair = NULL,
cutoff = NA,
cutoff_NME = NA,
no_tz = FALSE,
nobs = 8,
eval_function = stat,
select_time,
time = "date",
remove_ch = FALSE,
verbose = TRUE,
...
)
Arguments
mo |
data.frame with model data |
ob |
data.frame with observation data |
rname |
row name of the output (default is site argument) |
table |
data.frame to append the results |
site |
name of the stations or "ALL" (default), see notes |
wd |
default is FALSE, see notes |
fair |
model data.frame (or list of names) to perform a fair comparison, see notes |
cutoff |
minimum (optionally the maximum) valid value for observation |
cutoff_NME |
minimum (optionally the maximum) valid value for observation for NME |
no_tz |
ignore tz from input (force GMT) |
nobs |
minimum number of valid observations, default is 8 |
eval_function |
evaluation function (default is stat) |
select_time |
select the observation (ob) using time from model (mo) data.frame |
time |
name of the time column (containing time in POSIXct) |
remove_ch |
remove special characters on column names |
verbose |
display additional information |
... |
arguments to be passing to stats and plot |
Value
data.frame with statistical values from stat or cate functions.
Note
fair can be a data.frame or a character string to be used for the analysis, alternatively the function
for wind direction a rotation of 360 (or -360) is applied to minimize the wind direction difference.
If site == 'ALL' (default) all the columns from observations are combined in one column (same for observation) and all the columns are evaluated together.
Special thanks to Kiarash and Libo to help to test the wind direction option.
See Also
stat
for additional information about the statistical evaluation and cate
for categorical evaluation.
Examples
model <- readRDS(paste0(system.file("extdata",package="eva3dm"),
"/model.Rds"))
obs <- readRDS(paste0(system.file("extdata",package="eva3dm"),
"/obs.Rds"))
# if there is no observed data
# the function return an empty row
table <- eva(mo = model, ob = obs, site = "VVIbes")
print(table)
# if the site are not in the input data frame a message is displayed
# and the function return an empty row
table <- eva(mo = model, ob = obs, site = "Ibirapuera")
print(table)
# calculating statistical with a few observed values
table <- eva(mo = model, ob = obs, site = "Americana")
print(table)
# calculating categorical (using 2 for threshold) with a few observed values
table <- eva(mo = model, ob = obs, site = "Americana",
eval_function = cate, threshold = 2)
print(table)
# calculating categorical (using 2 for threshold) with a few observed values
table <- eva(mo = model, ob = obs, site = "Americana",
eval_function = cate, threshold = 10)
print(table)
# customizing the evaluation function: inclusion of p.value from stats::cor.test()
stat_p <- function(x, y, ...){
table <- eva3dm::stat(x, y, ...)
cor.result <- stats::cor.test(x, y, ... )
table$p.value <- cor.result$p.value
table <- table[,c(1:4,12,5:11)]
return(table)
}
table <- eva(mo = model, ob = obs, site = "Americana",eval_function = stat_p)
print(table)
Create a NetCDF file with the surface maximum of O3
Description
Read the values from o3 and T2, convert o3 to ug m-3 and calculate the maximum of 8-hour moving avarage from a list of files.
Usage
extract_max_8h(
filelist,
variable = "o3",
field = "4d",
prefix = "max_8h",
units = "ug m-3",
meta = TRUE,
filename,
verbose = TRUE
)
Arguments
filelist |
list of files to be read |
variable |
variable name |
field |
'4d' (default), '3d', '2d' or '2dz' see notes |
prefix |
to output file, default is serie |
units |
units on netcdf file (default is ug m-3), change to skip unit conversion |
meta |
use Times, XLONG and XLAT data (only works with 2d variable for file) |
filename |
name for the file, in this case prefix is not used |
verbose |
display additional information |
Value
No return value
Note
The field argument '4d' / '2dz' is used to read a 4d/3d variable droping the 3rd dimention (z).
Examples
dir.create(file.path(tempdir(), "MDA8"))
folder <- system.file("extdata",package="eva3dm")
wrf_file <- paste0(folder,"/test_small_o3.nc")
extract_max_8h(filelist = wrf_file,
prefix = paste0(file.path(tempdir(),"MDA8"),'/mean'),
field = '3d')
Create a NetCDF file with the surface mean
Description
Read and calculate the mean value of a variable from a list of wrf output files.
Usage
extract_mean(
filelist,
variable = "o3",
field = "4d",
prefix = "mean",
units = "ppmv",
meta = TRUE,
filename,
verbose = TRUE
)
Arguments
filelist |
list of files to be read |
variable |
variable name |
field |
'4d' (default), '3d', '2d' or '2dz' see notes |
prefix |
to output file, default is serie |
units |
units on netcdf file (default is ppmv) |
meta |
use Times, XLONG and XLAT data (only works with 2d variable for file) |
filename |
name for the file, in this case prefix is not used |
verbose |
display additional information |
Value
No return value
Note
The field argument '4d' / '2dz' is used to read a 4d/3d variable droping the 3rd dimention (z).
Examples
dir.create(file.path(tempdir(), "MEAN"))
folder <- system.file("extdata",package="eva3dm")
wrf_file <- paste0(folder,"/wrf.day1.o3.nc")
extract_mean(filelist = wrf_file,prefix = paste0(file.path(tempdir(),"MEAN"),'/mean'))
Extract time series of wrf file list of lat/lon
Description
Read and extract data from a list of wrf output files and a table of lat/lon points based on the distance of the points and the center of model grid points, points outside the domain (and points on domain boundary) are not extracted.
Usage
extract_serie(
filelist,
point,
variable = "o3",
field = "4d",
level = 1,
prefix = "serie",
new = "check",
return.nearest = FALSE,
fast = FALSE,
use_ij = FALSE,
latitude = "XLAT",
longitude = "XLONG",
use_TFLAG = FALSE,
use_datesec = FALSE,
id = "id",
remove_ch = FALSE,
verbose = TRUE
)
Arguments
filelist |
list of files to be read |
point |
data.frame with lat/lon |
variable |
variable name |
field |
'4d' (default), '3d', '2d' or '2dz' see notes |
level |
model level to be extracted |
prefix |
to output file, default is serie |
new |
TRUE, FALSE of 'check' see notes |
return.nearest |
return the data.frame of nearest points instead of extract the serie |
fast |
faster calculation of grid distances but less precise |
use_ij |
logical, use i and j from input instead of calculate |
latitude |
name of latitude coordinate variable in the netcdf |
longitude |
name of longitude coordinate variable in the netcdf |
use_TFLAG |
use the variable TFLAG (CMAQ / smoke) instead of Times (WRF) |
use_datesec |
use the variable date and datesec (WACCM / CAM-Chem) instead of Times (WRF) |
id |
name of the column with station names, if point is a SpatVector (points) from terra package |
remove_ch |
remove special characters on row.names |
verbose |
display additional information |
Value
No return value
Note
The field argument '4d' or '2dz' is used to read a 4d/3d variable droping the 3rd dimention (z).
new = TRUE create a new file, new = FALSE append the data in a old file, and new = 'check' check if the file exist and append if the file exist and create if the file doesnt exist
FOR CAMx time-series, use the options: use_TFLAG=T, latitude='latitude', longitude='longitude', new=T
FOR WACCM time-series, use the options: use_datesec=T, latitude='lat', longitude='lon', new=T
The site-list of two global data-sets (METAR and AERONET) are provided on examples and site-list for stations on Brazil (INMET and Air Quality stations).
Examples
cat('Example 1: METAR site list\n')
sites <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/sites_METAR.Rds"))
cat('Example 2: Integrated Surface Dataset (ISD) site list\n')
sites <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/sites_ISD.Rds"))
cat('Example 4: AERONET site list\n')
sites <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/sites_AERONET.Rds"))
cat('Example 5: list of INMET stations on Brazil\n')
sites <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/sites_INMET.Rds"))
cat('Example 6: list of Air Quality stations on Brazil\n')
sites <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/sites_AQ_BR.Rds"))
files <- dir(path = system.file("extdata",package="eva3dm"),
pattern = 'wrf.day',
full.names = TRUE)
dir.create(file.path(tempdir(),"SERIE"))
folder <- file.path(tempdir(),"SERIE")
# extract data for 3 locations
extract_serie(filelist = files, point = sites[1:3,],prefix = paste0(folder,'/serie'))
Get the distance in kilometers between two points
Description
Get the distance in kilometers between two points
Usage
get_distances(lat1, long1, lat2, long2, R = 6371)
Arguments
lat1 |
Latitude in decimals |
long1 |
Longitude in decimals |
lat2 |
Latitude in decimals |
long2 |
Longitude in decimals |
R |
Radius of the earth in kmdescription (R=6371) |
Value
A numeric vector with the distance in kilometers.
#' source: https://github.com/gustavobio/brclimate/blob/master/R/get_distances.R
Calculate hourly mean, min or max
Description
function to calculate Ozone Maximum Daily 8-hr Average or 8-hr moving Average for a data.frame
Usage
hourly(
data,
time = "date",
var,
stat = mean,
min_offset = 30,
numerical = TRUE,
verbose = TRUE
)
Arguments
data |
data.frame with time column and variable columns to be processed |
time |
name of the time column (default is date) in POSIXct |
var |
name of the columns to be calculated |
stat |
function of the statistics to calculate (default is mean) |
min_offset |
minutes of observation from previous hour (default is 30) |
numerical |
TRUE (default) includes only numerical columns |
verbose |
display additional information |
Value
data.frame including only numerical columns
data.frame with time and the hourly mean, min or max
Examples
# in case there is connection issue
load_data <- function(cond) {
message(paste("conection issue, loading pre-downloaded data"))
DATA <- readRDS(paste0(system.file("extdata",package="eva3dm"),
"/riem_OAHR_jan_2012.Rds"))
return(DATA)
}
sites <- c("OAHR")
for(site in sites){
cat('Trying to download METAR from:',site,'...\n')
DATA <- tryCatch(riem::riem_measures(station = sites,
date_start = "2012-01-01",
date_end = "2012-02-01"),
error = load_data)
}
data_hourly_mean <- hourly(DATA,time = 'valid')
data_hourly_min <- hourly(DATA[1:7],time = 'valid',stat = min)
data_hourly_max <- hourly(DATA[1:7],time = 'valid',stat = max)
Interpolation (project and resample)
Description
function to project and interpolate rast
Usage
interp(x, y, method = "bilinear", mask, verbose = FALSE)
Arguments
x |
rast to be interpolated |
y |
target rast of the interpolation |
method |
passed to terra::resample |
mask |
optional SpatVector to mask the results |
verbose |
display additional information (not used) |
Value
SpatRaster (terra package)
Examples
model_o3 <- terra::rast(paste0(system.file("extdata",package="eva3dm"),
"/camx_no2.Rds"))
omi_o3 <- terra::rast(paste0(system.file("extdata",package="eva3dm"),
"/omi_no2.Rds"))
# interpolate omi O3 column to model grid
omi_o3c_interp_model <- interp(omi_o3,model_o3)
# interpolate model o3 column to omi grid
model_o3c_interp_omi <- interp(omi_o3,model_o3)
Plot a legend with the range of values
Description
Plot a legend with the range of values
Usage
legend_range(
x,
y,
text.width = NULL,
dig = c(2, 2, 2),
xjust = 0.005,
yjust = 0.95,
horiz = TRUE,
y.intersp = 0.5,
x.intersp = 0.5,
show.mean = TRUE,
unit = "",
label_mean = "ALL:",
...
)
Arguments
x |
rast or array |
y |
rast or array to mean (x is used only for the range in this case) |
text.width |
Longitude in decimals |
dig |
vector with number of digits for plot |
xjust |
passed to legend |
yjust |
passed to legend |
horiz |
passed to legend |
y.intersp |
passed to legend |
x.intersp |
passed to legend |
show.mean |
set TRUE to hide mean value |
unit |
a string for units |
label_mean |
label in case y is provided |
... |
extra arguments passed to legend |
Value
No return value
Note
for use with rast use before any change of projection
text.width can vary depending on map dimensions
Examples
x <- 1:10 + rnorm(10,sd = .4)
plot(x,ty='l')
legend_range(x)
Calculate 8-hour moving average
Description
function to calculate Ozone 8-hour moving average for a data.frame
Usage
ma8h(data, time = "date", var, verbose = TRUE, ...)
Arguments
data |
data.frame with time column and variable columns to be processed |
time |
name of the time column (default is date) in POSIXct |
var |
name of the columns to be calculated |
verbose |
display additional information |
... |
parameters passed to hourly |
Value
data.frame with time and the 8-hour moving average
See Also
mda8
for Maximum Daily 8-hour moving average
Examples
model_file <- paste(system.file("extdata", package = "eva3dm"),
"/model_o3_ugm3_36km.Rds", sep="")
model <- readRDS(model_file)
model_8h <- ma8h(model)
plot(model$date,model$Campinas, pch = 19,
main = expression(O[3]~~'['*mu*g*m^-3*']'))
points(model_8h$date,model_8h$Campinas, col = 'blue', pch = 19)
legend('topleft',bty = 'n',
pch = 19,
legend = c('hourly','8h-mov average'),
col = c('black','blue'))
Maximum Daily 8-hr Average
Description
function to calculate Ozone Maximum Daily 8-hr Average or 8-hr moving Average for a data.frame
Usage
mda8(data, time = "date", var, verbose = TRUE)
Arguments
data |
data.frame with time column and variable columns to be processed |
time |
name of the time column (default is date) in POSIXct |
var |
name of the columns to be calculated |
verbose |
display additional information |
Value
data.frame with time and the maximum daily 8-hr average
See Also
ma8h
for 8-hour Moving Average
Examples
model_file <- paste(system.file("extdata", package = "eva3dm"),
"/model_o3_ugm3_36km.Rds", sep="")
model <- readRDS(model_file)
model_mda8 <- mda8(model)
model_8h <- ma8h(model)
plot(model$date,model$Campinas, pch = 19,
main = expression(O[3]~~'['*mu*g*m^-3*']'))
points(model_8h$date,model_8h$Campinas, col = 'blue', pch = 19)
points(model_mda8$date + 17*60*60,model_mda8$Campinas,
col = 'red', pch = 4, cex = 2)
legend('topleft',bty = 'n',
pch = c(19,19,4),
legend = c('hourly','8h-mov average','MD8A'),
col = c('black','blue','red'))
Print a 'ncdump -h' command
Description
Read a NetCDF and print the medatada
Usage
ncdump(file = file.choose())
Arguments
file |
file name |
Value
No return value, only display information
Examples
ncdump(file = paste0(system.file("extdata",package="eva3dm"),
'/wrfinput_d01'))
Plot or add points using a color scale
Description
Custon plot for SpatRaster (terra R-package) object based on terra package
Usage
overlay(
p,
z,
col,
col2,
lim = range(z, na.rm = TRUE),
symmetry = TRUE,
pch = 19,
pch2 = 1,
cex = 1,
cex2 = 1.2 * cex,
outside = TRUE,
add = FALSE,
plg = list(tic = "none", shrink = 1),
pax = list(),
expand = 1.15,
...
)
Arguments
p |
SpatVector points |
z |
column name or a vector of values to plot |
col |
color for the point |
col2 |
color for the outline |
lim |
range of values for scale |
symmetry |
calculate symmetrical scale |
pch |
type of point |
pch2 |
type of point for contour |
cex |
character expansion for the points |
cex2 |
character expansion for the contour |
outside |
to include values outside range |
add |
add to existing plot |
plg |
list of parameters passed to terra::add_legend |
pax |
list of parameters passed to graphics::axis |
expand |
to expand the plot region |
... |
arguments to be passing to terra::plot |
Value
No return value
Examples
sp<- terra::vect(paste0(system.file("extdata",package="eva3dm"),"/masp.shp"))
BR<- terra::vect(paste0(system.file("extdata",package="eva3dm"),"/BR.shp"))
p <- readRDS(paste0(system.file("extdata",package="eva3dm"),"/sites_AQ_BR.Rds"))
p$id <- row.names(p)
point <- terra::vect(p)
point$NMB <- 1:45 - 20 # some values to plot
terra::plot(BR, main = 'add points',xlim = c(-52,-37),ylim = c(-25,-18))
terra::lines(BR)
terra::lines(sp, col = 'gray')
overlay(point,point$NMB,cex = 1.4, add = TRUE)
overlay(point,point$NMB,cex = 1.4, add = FALSE, main = 'new plot')
terra::lines(BR)
terra::lines(sp, col = 'gray')
Plot the difference from two SpatRaster objects
Description
Custom difference (x - y) plots for SpatRaster object (based on terra package)
Usage
plot_diff(
x,
y,
col,
absolute = TRUE,
relative = TRUE,
lim_a = NA,
lim_r = NA,
scale,
unit = c(units(x), expression("%")),
...
)
Arguments
x |
SpatVector points |
y |
values to plot |
col |
color |
absolute |
to plot absolute difference |
relative |
to plot relative difference |
lim_a |
range of values for absolute scale |
lim_r |
range of values for relative scale |
scale |
variable multiplier for absolute difference |
unit |
annotation for units |
... |
arguments to be passing to plot_raster |
Value
No return value
Examples
folder <- system.file("extdata",package="eva3dm")
wrf <- paste0(folder,"/wrfinput_d01")
A <- wrf_rast(wrf,'XLAT')
terra::units(A) <- 'degrees'
B <- wrf_rast(wrf,'XLONG')
plot_diff(A,B,int = 2)
Plot rast (SpatRaster) object
Description
Custon plot for SpatRaster (terra R-package) object based on terra package
Usage
plot_rast(
r,
color,
ncolor = 21,
proj = FALSE,
plg = list(tic = "none", shrink = 1),
pax = list(),
latitude = TRUE,
longitude = TRUE,
int = 10,
grid = FALSE,
grid_int = int,
grid_col = "#666666",
add_range = FALSE,
ndig = 2,
log = FALSE,
range,
scale,
min = -3,
max,
unit,
...
)
Arguments
r |
raster |
color |
color scale, or name of a custom color scale (see notes) |
ncolor |
number of colors |
proj |
TRUE to project the raster to lat-lon |
plg |
list of parameters passed to terra::add_legend |
pax |
list of parameters passed to graphics::axis |
latitude |
add a latitude axis |
longitude |
add a longitude axis |
int |
interval of latitude and longitude lines |
grid |
add grid (graticule style) |
grid_int |
interval of grid lines |
grid_col |
color for grid lines |
add_range |
add legend with max, average and min r values |
ndig |
number of digits for legend_range |
log |
TRUE to plot in log-scale |
range |
range of original values to plot |
scale |
variable multiplier (not affect min/max/range) |
min |
minimum log value for log scale (default is -3) |
max |
maximum log value for log scale |
unit |
title for color bar |
... |
arguments to be passing to terra::plot |
Value
No return value
Note
color scales including: 'eva3', 'eva4', 'blues', 'diff', and 'rain'. Also reverse version with addition of a r ('eva3r' is the default).
Examples
wrf <- paste(system.file("extdata", package = "eva3dm"),
"/wrfinput_d01", sep="")
r <- wrf_rast(file=wrf, name='XLAT')
plot_rast(r)
Convert absolute humidity to relative humidity
Description
function to convert absolute humidity to relative humidity.
Usage
q2rh(q, t = 15, p = 101325)
Arguments
q |
vector (or data.frame) of absolute humidity (in g/Kg) |
t |
vector (or data.frame) of temperature (in Celcius) |
p |
vector (or data.frame) of pressure (in Pa) |
Value
vector or data.frame with time and the relative humidity, units are
Note
default values are from standard atmosphere (288.15 K (15C) / 101325 Pa)
if rh and temp arguments are data.frame, both need to have the same number of lines and columns, first column (time column) will be ignored.
Examples
# for a single value (or same length vectors)
q2rh(q = 0.0002038, t = 29.3, p = 100800)
# using all data.frames
times <- seq(as.POSIXct('2024-01-01',tz = 'UTC'),
as.POSIXct('2024-01-02',tz = 'UTC'),
by = 'hour')[1:5]
q2 <- data.frame(time = times, a = rep(0.0002038,5))
temp <- data.frame(time = times, a = rep( 29.3,5))
pres <- data.frame(time = times, a = rep( 100800,5))
q2rh(q = q2, t = temp, p = pres)
# using data.frame for q and t (p is cte.)
q2rh(q = q2, t = temp, p = 100000)
# using data.frame for q and p (t is cte.)
q2rh(q = q2, t = 26, p = pres)
# using data.frame only for q (p and t are cte.)
q2rh(q = q2, t = 26, p = 100000)
conversion of model precipitation to hourly precipitation
Description
function that converts model accumulated precipitation to hourly precipitation.
Usage
rain(rainc, rainnc, verbose = TRUE)
Arguments
rainc |
data.frame or SpatRaster with RAINC variable |
rainnc |
data.frame or SpatRaster with RAINNC variable |
verbose |
set TRUE to display additional information |
Value
data.frame time and the hourly precipitation or SpatRaster hourly precipitation
Examples
times <- seq(as.POSIXct('2024-01-01',tz = 'UTC'),
as.POSIXct('2024-01-01 04:00:00',tz = 'UTC'),
by = 'hour')
RNC <- data.frame(date = times, aa = c(0.149,0.149,0.149,0.149,0.149))
RNNC <- data.frame(date = times, aa = c(0.919,1.0,1.1,1.1,2.919))
rain(rainc = RNC, rainnc = RNNC)
Function to convert/save a SpatRaster array/Netcdf
Description
Conversion of SpatRaster to array and optionally save on a existing Netcdf File.
Usage
rast_to_netcdf(r, file, name, unit = units(r), XY = FALSE, verbose = TRUE)
Arguments
r |
SpatRaster object |
file |
Netcdf file name |
name |
variable name on a Netcdf file |
unit |
unit of the variable (set to NA to don't change unit) |
XY |
set to true if MemoryOrder is XY (only if file is missing) |
verbose |
display additional information |
Value
numerical array
Note
eva3dm::wrf_rast support 3d SpatRaster, in case of a 4d variable use other approach to save on file.
Examples
folder <- system.file("extdata",package="eva3dm")
wrf_file <- paste0(folder,"/wrf.day1.o3.nc")
Rast <- wrf_rast(wrf_file,'o3')
A <- rast_to_netcdf(Rast)
Function to read stats and evaluation
Description
Function to read stats and evaluation output
Usage
read_stat(file, sep = ";", dec = ".", verbose = FALSE, ...)
Arguments
file |
model data.frame |
sep |
the field separator string, passed to read.table function |
dec |
he string to use for decimal points, passed to read.table function |
verbose |
display additional information |
... |
arguments passed to read.table functions |
Value
No return value
Examples
sample <- read_stat(file = paste0(system.file("extdata", package = "eva3dm"),"/sample.txt"),
verbose = TRUE)
sample <- read_stat(file = paste0(system.file("extdata", package = "eva3dm"),"/sample.csv"),
verbose = TRUE)
Convert relative humidity to absolute humidity
Description
function to convert humidity to absolute humidity using Tetens formula, assuming standard atmosphere conditions.
Usage
rh2q(rh, temp = 15)
Arguments
rh |
vector (or data.frame) of relative humidity (in percentage) |
temp |
vector (or data.frame) of temperature (in Celsius) |
Value
value of data.frame with time and the absolute humidity, units are g/g
Note
default values are from standard atmosphere (288.15 K / 15 C)
if rh and temp arguments are data.frame, both need to have the same number of lines and columns, first column (time column) will be ignored.
Examples
# for a singfle value
rh2q(rh = 99, temp = 25)
# vector of rh values
rh2q(rh = c(0,seq(1,100, by = 4)), temp = 25)
# vector of values for rh and temp
rh2q(rh = c(0,seq(1,100, by = 4)), temp = 10:35)
# rh is data.frame and temp is a value
times <- seq(as.POSIXct('2024-01-01',tz = 'UTC'),
as.POSIXct('2024-01-02',tz = 'UTC'),
by = 'hour')
rh2q(rh = data.frame(time = times, a = seq(1,100, by = 4)),temp = 25)
# using both rh and temp are data.frames
rh2q(rh = data.frame(time = times, a = seq(1,100, by = 4)),
temp = data.frame(time = times, a = 11:35))
Functions to model evaluation using satellite
Description
functions to evaluate the spatial performance using satellite
Usage
sat(
mo,
ob,
rname,
table = NULL,
n = 6,
min = NA,
max = NA,
scale,
method = "bilinear",
eval_function = stat,
mask,
skip_interp = FALSE,
verbose = TRUE,
...
)
Arguments
mo |
SpatRaster or raster with model |
ob |
SpatRaster or raster with observations |
rname |
passed to stat |
table |
data.frame to append the results |
n |
number of points from the boundary removed, default is 5 |
min |
minimum value cutoff |
max |
maximum value cutoff |
scale |
multiplier for model and observation (after min/max cutoff) |
method |
passed to terra::resample |
eval_function |
evaluation function (default is stat) |
mask |
optional SpatVector to mask the results |
skip_interp |
skip the interpolation step |
verbose |
set TRUE to display additional information |
... |
other arguments passed to stat |
Value
a data.frame
Note
If a YOU DIED error message appears, means you are removing all the valid values using the arguments min or max.
If cate() is used for eval_function, the argument threshold must be included (see example).
Examples
model_no2 <- terra::rast(paste0(system.file("extdata",package="eva3dm"),
"/camx_no2.Rds"))
omi_no2 <- terra::rast(paste0(system.file("extdata",package="eva3dm"),
"/omi_no2.Rds"))
# generate the statistical indexes
sat(mo = model_no2,ob = omi_no2,rname = 'NO2_statistical')
# generate categorical evaluation using 3.0 as threshold
sat(mo = model_no2,ob = omi_no2,rname = 'NO2_categorical',
eval_function = cate, threshold = 3.0)
# customizing the evaluation function: inclusion of p.value from stats::cor.test()
stat_p <- function(x, y, ...){
table <- eva3dm::stat(x, y, ...)
cor.result <- stats::cor.test(x, y, ... )
table$p.value <- cor.result$p.value
table <- table[,c(1:4,12,5:11)]
return(table)
}
sat(mo = model_no2,ob = omi_no2,rname = 'NO2_statistical_with_p',eval_function = stat_p)
Selection from data.frames with time-series
Description
Utility function to select periods from a data.frame. This function is inspired by openair::selectByDate.
Usage
select(
data,
year,
month,
day,
hour,
minutes,
seconds,
start,
end,
range,
time = "date"
)
Arguments
data |
data.frame with model or observation data |
year |
numeric vector for selection |
month |
numeric vector (1-12) for selection, can be abbreviated to 3 or more letters |
day |
numeric vector (1-31) for selection, weekdays can be abbreviated to 3 or more letters, or weekday/weekend |
hour |
numeric vector (0-23) for selection |
minutes |
numeric vector (0-60) for selection |
seconds |
numeric vector (0-60) for selection |
start |
POSIXct or character (YYYY-MM-DD) with the initial date of selection |
end |
POSIXct or character (YYYY-MM-DD) with the initial date of selection |
range |
pair of start/end or a data.frame with time (default is "date") |
time |
name of the column for time (default is "date") |
Value
data.frame
See Also
See %IN%
for selection based on position and model domains.
Examples
model <- readRDS(paste0(system.file("extdata",package="eva3dm"),
"/model.Rds"))
summary(model)
summary(select(data = model, start = '2012-01-09'))
summary(select(data = model, start = '2012-01-05', end = '2012-01-09'))
summary(select(data = model, day = 6))
summary(select(data = model, hour = 12))
summary(select(data = model, day = 6, hour = 12))
summary(select(data = model, day = 'weekday'))
summary(select(data = model, day = 'weekend'))
summary(select(data = model, day = 'tue'))
summary(select(data = model, day = 'jan'))
Calculate evaluation statistics from numerical vectors
Description
Calculate statistical indexes (Number of pairs, observation average, model average, correlation, Index Of Agreement, Factor of 2, Root Mean Square Error, Mean Bias, Mean error, Normalized Mean Bias, and Normalized Mean Bias) for model evaluation
Usage
stat(
model,
observation,
wd = FALSE,
cutoff = NA,
cutoff_NME = NA,
nobs = 8,
rname,
verbose = TRUE
)
Arguments
model |
numeric vector with paired model data |
observation |
numeric vector with paired observation data |
wd |
logical, set true to apply a rotation on wind direction, see notes |
cutoff |
(optionally the maximum) valid value for observation |
cutoff_NME |
(optionally the maximum) valid value for observation for NME, MFB and MFE |
nobs |
minimum number of observations |
rname |
row name |
verbose |
display additional information |
Value
data.frame with calculated Number of pairs, observation average, model average, correlation, Index Of Agreement, Factor of 2, Root Mean Square Error, Mean Bias, Mean error, Normalized Mean Bias, and Normalized Mean Bias
Note
the option wd = TRUE applies a rotation of 360 on model wind direction to minimize the angular difference.
References
Emery, C. and Tai., E. 2001. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes.
Monk, K. et al. 2019. Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1—Meteorological Model Comparison. Atmosphere 10(7), p. 374. doi: 10.3390/atmos10070374.
Ramboll. 2018. PacWest Newport Meteorological Performance Evaluation.
Zhang, Y. et al. 2019. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I: Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite Data and Sensitivity to Spatial Grid Resolutions. Atmosphere 10(4), p. 189. doi: 10.3390/atmos10040189.
Emery, C., Liu, Z., Russell, A.G., Odman, M.T., Yarwood, G. and Kumar, N. 2017. Recommendations on statistics and benchmarks to assess photochemical model performance. Journal of the Air & Waste Management Association 67(5), pp. 582–598. doi: 10.1080/10962247.2016.1265027.
Zhai, H., Huang, L., Emery, C., Zhang, X., Wang, Y., Yarwood, G., ... & Li, L. (2024). Recommendations on benchmarks for photochemical air quality model applications in China—NO2, SO2, CO and PM10. Atmospheric Environment, 319, 120290.
Examples
model <- 1:100
data <- model + rnorm(100,0.2)
stat(model = model, observation = data)
Create templates for model evaluation
Description
Create templates of code (r-scripts and bash job-submission script) to read, post-process and evaluate model results.
Usage
template(
root,
template = "WRF",
case = "case",
env = "rspatial",
scheduler = "SBATCH",
partition = "main",
project = "PROJECT",
verbose = TRUE
)
Arguments
root |
directory to create the template |
template |
template type (see notes) |
case |
case to be evaluated |
env |
name of the conda environment |
scheduler |
job scheduler used (SBATCH or PBS) |
partition |
partition name |
project |
project name |
verbose |
display additional information |
Value
no value returned, create folders and other template scripts
Note
Templates types available:
- WRF (model post-process for METAR + INMET)
- WRF-3 (model post-process for METAR + INMET for triple nested domains)
- WRF-Chem (model post-process for METAR, AQS in Brazil and AERONET)
- EXP (model post-process for one experimental site including PBL variables)
- CAMx (post-process for triple tested domains)
- METAR (download METAR observations from ASOS)
- MET (evaluation of meteorology)
- MET-3 (evaluation of meteorology for triple nested domains)
- AQ (evaluation of air quality)
- PSA (model post-processing with CDO for satellite evaluation)
- SAT (evaluation of precipitation using GPCP satellite)
- AQS_BR (download data from air quality stations at Sao Paulo and Rio de Janeiro)
- INMET (pre-processing of automatic and conventional meteorological data from INMET)
- merge (merge INMET data and merge METAR data)
Examples
temp <- file.path(tempdir(),"POST")
template(root = temp,template = 'WRF', case = 'WRF-only')
Function to calculate model wind direction
Description
Function to calculate model wind direction
Usage
uv2wd(u, v, verbose = TRUE)
Arguments
u |
data.frame with model time-series of U10 |
v |
data.frame with model time-series of V10 |
verbose |
display additional information |
Value
vector or data.frame with time and the wind direction, units are degree north
Examples
times <- seq(as.POSIXct('2024-01-01',tz = 'UTC'),
as.POSIXct('2024-01-02',tz = 'UTC'),
by = 'hour')
U10 = data.frame(times = times,
test1 = c(3.29,2.07,1.96,2.82,3.73,
4.11,4.96,6.33,7.39,7.59,
7.51,7.22,6.81,6.43,5.81,
4.02,3.03,2.68,2.40,2.20,
2.09,1.95,1.66,1.39,1.4),
test2 = c(6.29,4.87,6.16,7.12,8.77,
10.16,10.85,11.45,11.21,11.04,
11.09,10.67,10.48,10.00,8.96,
6.36,5.62,5.83,5.83,5.25,
4.11,3.08,2.26,1.14,-0.10))
V10 = data.frame(times = times,
test1 = c(-8.87,-4.23,-2.81,-2.59,-4.58,
-4.80,-5.33,-5.86,-6.12,-6.13,
-6.11,-5.76,-5.91,-5.60,-5.09,
-3.33,-2.50,-2.29,-2.14,-2.07,
-1.95,-1.97,-2.04,-2.03,-1.9),
test2 = c(11.80,5.88,5.74,5.56,6.87,
8.39,8.68,8.33,7.90,7.42,
6.96,6.87,6.36,5.61,5.16,
4.16,4.25,4.59,4.51,3.90,
2.97,1.98,1.04,-0.08,-0.44))
uv2wd(u = U10, v = V10)
Function to calculate model wind speed
Description
Function to calculate model wind speed
Usage
uv2ws(u, v, verbose = TRUE)
Arguments
u |
data.frame with model time-series of U10 |
v |
data.frame with model time-series of V10 |
verbose |
display additional information |
Value
vector or data.frame with time and the wind sped, units are m/s
Examples
times <- seq(as.POSIXct('2024-01-01',tz = 'UTC'),
as.POSIXct('2024-01-02',tz = 'UTC'),
by = 'hour')
U10 = data.frame(times = times,
test1 = c(3.29,2.07,1.96,2.82,3.73,
4.11,4.96,6.33,7.39,7.59,
7.51,7.22,6.81,6.43,5.81,
4.02,3.03,2.68,2.40,2.20,
2.09,1.95,1.66,1.39,1.4),
test2 = c(6.29,4.87,6.16,7.12,8.77,
10.16,10.85,11.45,11.21,11.04,
11.09,10.67,10.48,10.00,8.96,
6.36,5.62,5.83,5.83,5.25,
4.11,3.08,2.26,1.14,-0.10))
V10 = data.frame(times = times,
test1 = c(-8.87,-4.23,-2.81,-2.59,-4.58,
-4.80,-5.33,-5.86,-6.12,-6.13,
-6.11,-5.76,-5.91,-5.60,-5.09,
-3.33,-2.50,-2.29,-2.14,-2.07,
-1.95,-1.97,-2.04,-2.03,-1.9),
test2 = c(11.80,5.88,5.74,5.56,6.87,
8.39,8.68,8.33,7.90,7.42,
6.96,6.87,6.36,5.61,5.16,
4.16,4.25,4.59,4.51,3.90,
2.97,1.98,1.04,-0.08,-0.44))
uv2ws(u = U10, v = V10)
Function to return variable names
Description
Return variable names of a NetCDF
Usage
vars(file = NA, action = "get", verbose = FALSE)
Arguments
file |
file name |
action |
'get' to return variable names or 'print' to print |
verbose |
display additional information |
Value
string
Examples
vars(paste0(system.file("extdata",package="eva3dm"),'/wrfinput_d01'))
Creates SpatRaster object from wrf file
Description
Creates a SpatRaster (terra R-package) object from a variable from wrf file (or another compatible NetCDF)
Usage
wrf_rast(
file = file.choose(),
name = NA,
map,
level = 1,
times,
latlon = FALSE,
method = "bilinear",
as_polygons = FALSE,
flip_h = FALSE,
flip_v = FALSE,
verbose = FALSE,
...
)
Arguments
file |
wrf file |
name |
variable name |
map |
(optional) file with lat-lon variables and grid information |
level |
only for 4d data, numeric, default is 1 for surface (include all times) |
times |
only for 4d data, numeric, set to select time instead of levels (include all levels) |
latlon |
logical (default is FALSE), set TRUE project the output to "+proj=longlat +datum=WGS84 +no_defs" |
method |
method passed to terra::projection, default is bilinear |
as_polygons |
logical, true to return a SpatVector instead of SpatRaster |
flip_h |
horizontal flip (by rows) |
flip_v |
vertical flip (by cols) |
verbose |
display additional information |
... |
extra arguments passed to ncdf4::ncvar_get |
Value
SpatRaster object (terra package)
Examples
{
wrf <- paste(system.file("extdata", package = "eva3dm"),
"/wrfinput_d01", sep="")
r <- wrf_rast(file=wrf, name='XLAT')
plot_rast(r)
}
Functions to write stats and evaluation
Description
Functions to write the output from evaluation functions. If the file name ends with .csv the function write.csv is used otherwise the function write.table is used.
Usage
write_stat(stat, file, sep = ";", dec = ".", verbose = FALSE, ...)
Arguments
stat |
observed data.frame |
file |
model data.frame |
sep |
the field separator string, passed to write.table function |
dec |
he string to use for decimal points, passed to write.table function |
verbose |
display additional information |
... |
arguments passed to write.table and write.csv functions |
Value
No return value
Examples
sample <- read_stat(paste0(system.file("extdata", package = "eva3dm"),"/sample.csv"),
verbose = TRUE)
dir.create(file.path(tempdir(), "stats"))
write_stat(file = paste0(file.path(tempdir(), "stats"),'/sample.txt'),
stat = sample,
verbose = TRUE)
write_stat(file = paste0(file.path(tempdir(), "stats"),'/sample.csv'),
stat = sample,
verbose = TRUE)