
Package ‘fastbeta’
April 28, 2025

Version 0.4.0

Date 2025-04-28

Title Fast Approximation of Time-Varying Infectious Disease
Transmission Rates

Description A fast method for approximating time-varying infectious disease
transmission rates from disease incidence time series and other
data, based on a discrete time approximation of an SEIR model, as
analyzed in Jagan et al. (2020) <doi:10.1371/journal.pcbi.1008124>.

License GPL (>= 2)

URL https://github.com/davidearn/fastbeta

BugReports https://github.com/davidearn/fastbeta/issues

Depends R (>= 4.3)

Imports grDevices, graphics, stats

Suggests adaptivetau, deSolve, tools, utils

BuildResaveData no

NeedsCompilation yes

Author Mikael Jagan [aut, cre] (<https://orcid.org/0000-0002-3542-2938>)

Maintainer Mikael Jagan <jaganmn@mcmaster.ca>

Repository CRAN

Date/Publication 2025-04-28 16:30:05 UTC

Contents
fastbeta-package . 2
deconvolve . 2
fastbeta . 4
fastbeta.bootstrap . 6
fastbeta.matrix . 8
ptpi . 9
seir . 12

1

https://doi.org/10.1371/journal.pcbi.1008124
https://github.com/davidearn/fastbeta
https://github.com/davidearn/fastbeta/issues
https://orcid.org/0000-0002-3542-2938

2 deconvolve

seir.auxiliary . 15
seir.library . 16
sir.aoi . 17
smallpox . 20

Index 22

fastbeta-package R Package fastbeta

Description

An R package for approximating time-varying infectious disease transmission rates from disease
incidence time series and other data.

Details

The “main” function is fastbeta.

To render a list of available help topics, use help(package = "fastbeta").

To report a bug or request a change, use bug.report(package = "fastbeta").

Author(s)

Mikael Jagan <jaganmn@mcmaster.ca>

deconvolve Richardson-Lucy Deconvolution

Description

Performs a modified Richardson-Lucy iteration for the purpose of estimating incidence from re-
ported incidence or mortality, conditional on a reporting probability and on a distribution of the
time to reporting.

Usage

deconvolve(x, prob = 1, delay = 1,
start, tol = 1, iter.max = 32L, complete = FALSE)

deconvolve 3

Arguments

x a numeric vector of length n giving the number of infections or deaths reported
during n observation intervals of equal duration.

prob a numeric vector of length d+n such that prob[d+i] is the probability that an
infection during interval i is eventually reported. prob of length 1 is recycled.

delay a numeric vector of length d+1 such that delay[j] is the probability that an
infection during interval i is reported during interval i+j-1, given that it is
eventually reported. delay need not sum to 1 but must not sum to 0.

start a numeric vector of length d+n giving a starting value for the iteration. start[d+i]
estimates the expected number of infections during interval i that are eventually
reported. If missing, then a starting value is generated by padding x on the left
and right with d-d0 and d0 zeros, choosing d0 = which.max(delay)-1.

tol a tolerance indicating a stopping condition; see the reference.

iter.max the maximum number of iterations.

complete a logical flag indicating if the result should preserve successive updates to start.

Value

A list with elements:

value the result of updating start iter times then dividing by prob. If complete
= TRUE, then value is a (d+n)-by-(1+iter) matrix containing start and the
iter successive updates, each divided by prob.

chisq the chi-squared statistics corresponding to value.

iter the number of iterations performed.

References

Goldstein, E., Dushoff, J., Ma, J., Plotkin, J. B., Earn, D. J. D., & Lipsitch, M. (2020). Recon-
structing influenza incidence by deconvolution of daily mortality time series. Proceedings of the
National Academy of Sciences U. S. A., 106(51), 21825-21829. doi:10.1073/pnas.0902958106

Examples

set.seed(2L)
n <- 200L
d <- 50L
p <- 0.1
prob <- plogis(rlogis(d + n, location = qlogis(p), scale = 0.1))
delay <- diff(pgamma(0L:(d + 1L), 12, 0.4))

h <- function (x, a = 1, b = 1, c = 0) a * exp(-b * (x - c)^2)
ans <- floor(h(seq(-60, 60, length.out = d + n), a = 1000, b = 0.001))

x0 <- rbinom(d + n, ans, prob)
x <- tabulate(rep(1L:(d + n), x0) +

sample(0L:d, size = sum(x0), replace = TRUE, prob = delay),
d + n)[-(1L:d)]

https://doi.org/10.1073/pnas.0902958106

4 fastbeta

str(D0 <- deconvolve(x, prob, delay, complete = FALSE))
str(D1 <- deconvolve(x, prob, delay, complete = TRUE))

matplot(-(d - 1L):n,
cbind(x0, c(rep(NA, d), x), prob * D0[["value"]], p * ans),
type = c("p", "p", "p", "l"),
col = c(1L, 1L, 2L, 4L), pch = c(16L, 1L, 16L, NA),
lty = c(0L, 0L, 0L, 1L), lwd = c(NA, NA, NA, 3L),
xlab = "Time", ylab = "Count")

legend("topleft", NULL,
c("actual", "actual+delay", "actual+delay+deconvolution", "p*h"),
col = c(1L, 1L, 2L, 4L), pch = c(16L, 1L, 16L, NA),
lty = c(0L, 0L, 0L, 1L), lwd = c(NA, NA, NA, 3L),
bty = "n")

plot(0L:D1[["iter"]], D1[["chisq"]], xlab = "Iterations", ylab = quote(chi^2))
abline(h = 1, lty = 2L)

fastbeta Estimate a Time-Varying Infectious Disease Transmission Rate

Description

Generates a discrete approximation of a time-varying infectious disease transmission rate from an
equally spaced disease incidence time series and other data.

Usage

fastbeta(series, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L, init, ...)

Arguments

series a “multiple time series” object, inheriting from class mts, with three columns
storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta
non-negative numbers. m*sigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

n a positive integer indicating a number of infectious stages.

init a numeric vector of length 1+m+n+1 giving an initial state with compartments
ordered as (S,E, I,R).

... optional arguments passed to deconvolve, if the first column of series repre-
sents observed incidence rather than actual or estimated incidence.

fastbeta 5

Details

The algorithm implemented by fastbeta is based on an SEIR model with

• m latent stages (Ei, i = 1, . . . ,m);

• n infectious stages (Ij , j = 1, . . . , n);

• time-varying rates β, ν, and µ of transmission, birth, and natural death; and

• constant rates mσ, nγ, and δ of removal from each latent, infectious, and recovered com-
partment, where removal from the recovered compartment implies return to the susceptible
compartment (loss of immunity).

It is derived by linearizing of the system of ordinary differential equations

dS /dt = δR − (λ(t) + µ(t))S + ν(t)

dE1 /dt = λ(t)S − (mσ + µ(t))E1

dEi+1/dt = mσEi − (mσ + µ(t))Ei+1

dI1 /dt = mσEm − (nγ + µ(t))I1

dIj+1 /dt = nγIj − (nγ + µ(t))Ij+1

dR /dt = nγIn − (δ + µ(t))R

λ(t) = β(t)
∑
j

Ij

and substituting actual or estimated incidence and births for definite integrals of λS and ν. This
procedure yields a system of linear difference equations from which one recovers a discrete approx-
imation of β:

E1
t+1 = [(1− 1

2 (mσ + µt))E
1
t + Zt+1]/[1 + 1

2 (mσ + µt+1)]

Ei+1
t+1 = [(1− 1

2 (mσ + µt))E
i+1
t + 1

2mσ(Ei
t + Ei

t+1)]/[1 + 1
2 (mσ + µt+1)]

I1t+1 = [(1− 1
2 (nγ + µt))I

1
t + 1

2mσ(Em
t + Em

t+1)]/[1 + 1
2 (nγ + µt+1)]

Ij+1
t+1 = [(1− 1

2 (nγ + µt))I
j+1
t + 1

2 nγ(Ijt + Ijt+1)]/[1 + 1
2 (nγ + µt+1)]

Rt+1 = [(1− 1
2 (δ + µt))Rt + 1

2 nγ(Int + Int+1)]/[1 + 1
2 (δ + µt+1)]

St+1 = [(1− 1
2 (µt))St + 1

2 δ(Rt +Rt+1)− Zt+1 +Bt+1]/[1 +
1
2 (µt+1)]

βt = (Zt+Zt+1)/(2St

∑
j

Ijt)

where we use the notation

Xt ∼ X(t) : X = S,Ei, Ij , R, Z,B, µ, β

Z(t) =

∫ t

t−1

λ(s)S(s) ds

B(t) =

∫ t

t−1

ν(s) ds

and it is understood that the independent variable t is a unitless measure of time relative to the
spacing of the substituted time series of incidence and births.

Value

A “multiple time series” object, inheriting from class mts, with 1+m+n+1+1 columns (named S, E,
I, R, and beta) storing the result of the iteration described in ‘Details’. It is completely parallel to
argument series, having the same tsp attribute.

6 fastbeta.bootstrap

References

Jagan, M., deJonge, M. S., Krylova, O., & Earn, D. J. D. (2020). Fast estimation of time-varying
infectious disease transmission rates. PLOS Computational Biology, 16(9), Article e1008124, 1-39.
doi:10.1371/journal.pcbi.1008124

Examples

if (requireNamespace("adaptivetau")) withAutoprint({

data(seir.ts02, package = "fastbeta")
a <- attributes(seir.ts02)
str(seir.ts02)
plot(seir.ts02)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters
series <- cbind(seir.ts02[, c("Z", "B")], mu = a[["mu"]](0))
colnames(series) <- c("Z", "B", "mu") # FIXME: stats:::cbind.ts mangles dimnames

args <- c(list(series = series),
a[c("sigma", "gamma", "delta", "m", "n", "init")])

str(args)

X <- do.call(fastbeta, args)
str(X)
plot(X)

plot(X[, "beta"], ylab = "Transmission rate")
lines(a[["beta"]](time(X)), col = "red") # the "truth"

})

fastbeta.bootstrap Parametric Bootstrapping

Description

A simple wrapper around fastbeta using it to generate a “primary” estimate of a time-varying
transmission rate and r bootstrap estimates. Bootstrap estimates are computed for incidence time
series simulated using seir, with transmission rate defined as the linear interpolant of the primary
estimate.

Usage

fastbeta.bootstrap(r,
series, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L, init, ...)

https://doi.org/10.1371/journal.pcbi.1008124

fastbeta.bootstrap 7

Arguments

r a non-negative integer indicating a number of replications.

series a “multiple time series” object, inheriting from class mts, with three columns
storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta
non-negative numbers. m*sigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

n a positive integer indicating a number of infectious stages.

init a numeric vector of length 1+m+n+1 giving an initial state with compartments
ordered as (S,E, I,R).

... optional arguments passed to seir and/or deconvolve. Both take optional ar-
guments prob and delay. When prob is supplied but not delay, seir and
deconvolve receive prob as is. When both are supplied, seir receives prob
as is, whereas deconvolve receives prob augmented with length(delay)-1
ones.

Value

A “multiple time series” object, inheriting from class mts, with 1+r columns storing the one primary
and r bootstrap estimates. It is completely parallel to argument series, having the same tsp
attribute.

Examples

if (requireNamespace("adaptivetau")) withAutoprint({

data(seir.ts02, package = "fastbeta")
a <- attributes(seir.ts02)
str(seir.ts02)
plot(seir.ts02)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters
series <- cbind(seir.ts02[, c("Z", "B")], mu = a[["mu"]](0))
colnames(series) <- c("Z", "B", "mu") # FIXME: stats:::cbind.ts mangles dimnames

args <- c(list(r = 100L, series = series),
a[c("sigma", "gamma", "delta", "m", "n", "init")])

str(args)

R <- do.call(fastbeta.bootstrap, args)
str(R)
plot(R)
plot(R, level = 0.95)

})

8 fastbeta.matrix

fastbeta.matrix Calculate Coefficient Matrix for Iteration Step

Description

Calculates the coefficient matrix corresponding to one step of the iteration carried out by fastbeta:

y <- c(1, E, I, R, S)
for (pos in seq_len(nrow(series) - 1L)) {

L <- fastbeta.matrix(pos, series, ...)
y <- L %*% y

}

Usage

fastbeta.matrix(pos,
series, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L)

Arguments

pos an integer indexing a row (but not the last row) of series.

series a “multiple time series” object, inheriting from class mts, with three columns
storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta
non-negative numbers. m*sigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

n a positive integer indicating a number of infectious stages.

Value

A lower triangular matrix of size 1+m+n+1+1.

Examples

if (requireNamespace("adaptivetau")) withAutoprint({

data(seir.ts02, package = "fastbeta")
a <- attributes(seir.ts02); p <- length(a[["init"]])
str(seir.ts02)
plot(seir.ts02)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters
series <- cbind(seir.ts02[, c("Z", "B")], mu = a[["mu"]](0))

ptpi 9

colnames(series) <- c("Z", "B", "mu") # FIXME: stats:::cbind.ts mangles dimnames

args <- c(list(series = series),
a[c("sigma", "gamma", "delta", "init", "m", "n")])

str(args)

X <- unclass(do.call(fastbeta, args))[, seq_len(p)]
colnames(X)
Y <- Y. <- cbind(1, X[, c(2L:p, 1L)], deparse.level = 2L)
colnames(Y)

args <- c(list(pos = 1L, series = series),
a[c("sigma", "gamma", "delta", "m", "n")])

str(args)

L <- do.call(fastbeta.matrix, args)
str(L)
symnum(L != 0)

for (pos in seq_len(nrow(series) - 1L)) {
args[["pos"]] <- pos
L. <- do.call(fastbeta.matrix, args)
Y.[pos + 1L,] <- L. %*% Y.[pos,]

}
stopifnot(all.equal(Y, Y.))

})

ptpi Peak to Peak Iteration

Description

Approximates the state of an SEIR model at a reference time from an equally spaced, T -periodic
incidence time series and other data. The algorithm relies on a strong assumption: that the incidence
time series was generated by the asymptotic dynamics of an SEIR model admitting a locally stable,
T -periodic attractor. Hence do interpret with care.

Usage

ptpi(series, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L, init,
start = tsp(series)[1L], end = tsp(series)[2L],
tol = 1e-03, iter.max = 32L,
backcalc = FALSE, complete = FALSE, ...)

10 ptpi

Arguments

series a “multiple time series” object, inheriting from class mts, with three columns
storing (“parallel”, equally spaced) time series of incidence, births, and the per
capita natural mortality rate, in that order.

sigma, gamma, delta
non-negative numbers. m*sigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

n a positive integer indicating a number of infectious stages.

init a numeric vector of length 1+m+n+1 giving an initial guess for the state at time
start.

start, end start and end times for the iteration, whose difference should be approximately
equal to an integer number of periods. One often chooses the time of the first
peak in the incidence time series and the time of the last peak in phase with the
first.

tol a tolerance indicating a stopping condition; see ‘Details’.

iter.max the maximum number of iterations.

backcalc a logical indicating if the state at time tsp(series)[1] should be back-calculated
from the state at time start if that is later.

complete a logical indicating if intermediate states should be recorded in an array. Useful
mainly for didactic or diagnostic purposes.

... optional arguments passed to deconvolve, if the first column of series repre-
sents observed incidence rather than actual or estimated incidence.

Details

ptpi can be understood as an iterative application of fastbeta to a subset of series. The basic
algorithm can be expressed in R code as:

w <- window(series, start, end); i <- nrow(s); j <- seq_along(init)
diff <- Inf; iter <- 0L
while (diff > tol && iter < iter.max) {

init. <- init
init <- fastbeta(w, sigma, gamma, delta, m, n, init)[i, j]
diff <- sqrt(sum((init - init.)^2) / sum(init.^2))
iter <- iter + 1L

}
value <- init

Back-calculation involves solving a linear system of equations; the back-calculated result can mis-
lead if the system is ill-conditioned.

Value

A list with elements:

ptpi 11

value an approximation of the state at time start or at time tsp(series)[1L], de-
pending on backcalc.

diff the relative difference between the last two approximations.

iter the number of iterations performed.

x if complete = TRUE, then a “multiple time series” object, inheriting from class
mts, with dimensions c(nrow(w), length(value), iter), where w = window(series,
start, end). x[, , k] contains the state at each time(w) in iteration k.

References

Jagan, M., deJonge, M. S., Krylova, O., & Earn, D. J. D. (2020). Fast estimation of time-varying
infectious disease transmission rates. PLOS Computational Biology, 16(9), Article e1008124, 1-39.
doi:10.1371/journal.pcbi.1008124

Examples

if (requireNamespace("deSolve")) withAutoprint({

data(seir.ts01, package = "fastbeta")
a <- attributes(seir.ts01); p <- length(a[["init"]])
str(seir.ts01)
plot(seir.ts01)

We suppose that we have perfect knowledge of incidence,
births, and the data-generating parameters, except for
the initial state, which we "guess"
series <- cbind(seir.ts01[, c("Z", "B")], mu = a[["mu"]](0))
colnames(series) <- c("Z", "B", "mu") # FIXME: stats:::cbind.ts mangles dimnames

plot(series[, "Z"])
start <- 23; end <- 231
abline(v = c(start, end), lty = 2)

set.seed(0L)
args <- c(list(series = series),

a[c("sigma", "gamma", "delta", "m", "n", "init")],
list(start = start, end = end, complete = TRUE))

init <- seir.ts01[which.min(abs(time(seir.ts01) - start)), seq_len(p)]
args[["init"]] <- init * rlnorm(p, 0, 0.1)
str(args)

L <- do.call(ptpi, args)
str(L)

S <- L[["x"]][, "S",]
plot(S, plot.type = "single")
lines(seir.ts01[, "S"], col = "red", lwd = 4) # the "truth"
abline(h = L[["value"]]["S"], v = start, col = "blue", lwd = 4, lty = 2)

Relative error
L[["value"]] / init - 1

https://doi.org/10.1371/journal.pcbi.1008124

12 seir

})

seir Simulate Infectious Disease Time Series

Description

Simulates incidence time series based on an SEIR model with user-defined forcing and a simple
model for observation error.

Note that simulation code depends on availability of suggested packages adaptivetau and deSolve.
If the dependency cannot be loaded then an error is signaled.

Usage

seir(length.out = 1L,
beta, nu = function (t) 0, mu = function (t) 0,
sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L, init,
stochastic = TRUE, prob = 1, delay = 1,
aggregate = FALSE, useCompiled = TRUE, ...)

A basic wrapper for the m=0L case:

sir(length.out = 1L,
beta, nu = function (t) 0, mu = function (t) 0,
gamma = 1, delta = 0,
n = 1L, init,
stochastic = TRUE, prob = 1, delay = 1,
aggregate = FALSE, useCompiled = TRUE, ...)

Arguments

length.out a non-negative integer indicating the time series length.

beta, nu, mu functions of one or more arguments returning transmission, birth, and natural
death rates at the time point indicated by the first argument. Arguments after the
first must be strictly optional. The functions need not be vectorized.

sigma, gamma, delta
non-negative numbers. m*sigma, n*gamma, and delta are the rates of removal
from each latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

n a positive integer indicating a number of infectious stages.

init a numeric vector of length 1+m+n+1 giving an initial state with compartments
ordered as (S,E, I,R).

stochastic a logical indicating if the simulation should be stochastic; see ‘Details’.

seir 13

prob a numeric vector of length n such that prob[i] is the probability that an infec-
tion during interval i is eventually observed. prob of length 1 is recycled.

delay a numeric vector of positive length such that delay[i] is the probability that
an infection during interval j is observed during interval j+i-1, given that it is
eventually observed. delay need not sum to 1 but must not sum to 0.

aggregate a logical indicating if latent and infectious compartments should be aggregated.

useCompiled a logical indicating if derivatives should be computed by compiled C functions
rather than by R functions (which may be byte-compiled). Set to FALSE only if
TRUE seems to cause problems, and in that case please report the problems with
bug.report(package = "fastbeta").

... optional arguments passed to lsoda (directly) or ssa.adaptivetau (via its list
argument tl.params), depending on stochastic.

Details

Simulations are based on an SEIR model with

• m latent stages (Ei, i = 1, . . . ,m);

• n infectious stages (Ij , j = 1, . . . , n);

• time-varying rates β, ν, and µ of transmission, birth, and natural death; and

• constant rates mσ, nγ, and δ of removal from each latent, infectious, and recovered com-
partment, where removal from the recovered compartment implies return to the susceptible
compartment (loss of immunity).

seir(stochastic = FALSE) works by numerically integrating the system of ordinary differential
equations

dS /dt = δR − (λ(t) + µ(t))S + ν(t)

dE1 /dt = λ(t)S − (mσ + µ(t))E1

dEi+1/dt = mσEi − (mσ + µ(t))Ei+1

dI1 /dt = mσEm − (nγ + µ(t))I1

dIj+1 /dt = nγIj − (nγ + µ(t))Ij+1

dR /dt = nγIn − (δ + µ(t))R

λ(t) = β(t)
∑
j

Ij

where it is understood that the independent variable t is a unitless measure of time relative to an
observation interval. To get time series of incidence and births, the system is augmented with two
equations describing cumulative incidence and births

dZ/dt = λ(t)S

dB/dt = ν(t)

and the augmented system is numerically integrated. Observed incidence is simulated from inci-
dence by scaling the latter by prob and convolving the result with delay.

seir(stochastic = TRUE) works by simulating a Markov process corresponding to the augmented
system, as described in the reference. Observed incidence is simulated from incidence by binning
binomial samples taken with probabilities prob over future observation intervals according to multi-
nomial samples taken with probabilities delay.

14 seir

Value

A “multiple time series” object, inheriting from class mts. Beneath the class, it is a length.out-
by-(1+m+n+1+2) numeric matrix with columns S, E, I, R, Z, and B, where Z and B specify incidence
and births as the number of infections and births since the previous time point.

If prob or delay is not missing, then there is an additional column Z.obs specifying observed inci-
dence as the number of infections observed since the previous time point. The first length(delay)
elements of this column contain partial counts.

References

Cao, Y., Gillespie, D. T., & Petzold, L. R. (2007). Adaptive explicit-implicit tau-leaping method
with automatic tau selection. Journal of Chemical Physics, 126(22), Article 224101, 1-9. doi:10.1063/
1.2745299

See Also

seir.auxiliary, seir.library.

Examples

if (requireNamespace("adaptivetau")) withAutoprint({

beta <- function (t, a = 1e-01, b = 1e-05) b * (1 + a * sinpi(t / 26))
nu <- function (t) 1e+03
mu <- function (t) 1e-03

sigma <- 0.5
gamma <- 0.5
delta <- 0

init <- c(S = 50200, E = 1895, I = 1892, R = 946011)

length.out <- 250L
prob <- 0.1
delay <- diff(pgamma(0:8, 2.5))

set.seed(0L)
X <- seir(length.out, beta, nu, mu, sigma, gamma, delta, init = init,

prob = prob, delay = delay, epsilon = 0.002)
^^^^^
default epsilon = 0.05 allows too big leaps => spurious noise
##
str(X)
plot(X)

r <- 10L
Y <- do.call(cbind, replicate(r, simplify = FALSE,
seir(length.out, beta, nu, mu, sigma, gamma, delta, init = init,

prob = prob, delay = delay, epsilon = 0.002)[, "Z.obs"]))
str(Y) # FIXME: stats:::cbind.ts mangles dimnames
plot(window(Y, start = tsp(Y)[1L] + length(delay) / tsp(Y)[3L]),

https://doi.org/10.1063/1.2745299
https://doi.org/10.1063/1.2745299

seir.auxiliary 15

^^^^^
discards points showing edge effects due to 'delay'
##
plot.type = "single", col = seq_len(r), ylab = "Case reports")

})

seir.auxiliary Auxiliary Functions for the SEIR Model without Forcing

Description

Calculate the basic reproduction number, endemic equilibrium, and Jacobian matrix of the SEIR
model without forcing.

Usage

seir.R0 (beta, nu = 0, mu = 0, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L, N = 1)

seir.ee (beta, nu = 0, mu = 0, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L, N = 1)

seir.jacobian(beta, nu = 0, mu = 0, sigma = 1, gamma = 1, delta = 0,
m = 1L, n = 1L)

Arguments

beta, nu, mu, sigma, gamma, delta
non-negative numbers. beta, nu, and mu are the rates of transmission, birth, and
natural death. m*sigma, n*gamma, and delta are the rates of removal from each
latent, infectious, and recovered compartment.

m a non-negative integer indicating a number of latent stages.

n a positive integer indicating a number of infectious stages.

N a non-negative number indicating a population size for the (nu == 0 && mu == 0)
case.

Details

If µ, ν = 0, then the basic reproduction number is computed as

R0 = Nβ/γ

and the endemic equilibrium is computed as
S
Ei

Ij

R

 =


γ/β

wδ/(mσ)
wδ/(nγ)

w



16 seir.library

where w is chosen so that the sum is N .

If µ, ν > 0, then the basic reproduction number is computed as

R0 = νβa−m(1− b−n)/µ2

and the endemic equilibrium is computed as
S
Ei

Ij

R

 =


µam/(β(1− b−n))

wam−ibn(δ + µ)/(mσ)
wbn−j(δ + µ)/(nγ)

w


where w is chosen so that the sum is ν/µ, the population size at equilibrium, and a = 1 + µ/(mσ)
and b = 1 + µ/(nγ).

Currently, none of the functions documented here are vectorized. Arguments must have length 1.

Value

seir.R0 returns a numeric vector of length 1. seir.ee returns a numeric vector of length 1+m+n+1.
seir.jacobian returns a function of one argument x (which must be a numeric vector of length
1+m+n+1) whose return value is a square numeric matrix of size length(x).

See Also

seir, for the system of ordinary differential equations on which these computations are predicated.

seir.library Often Used Simulations

Description

Infectious disease time series simulated using seir, for use primarily in examples, tests, and vi-
gnettes. Users should not rely on simulation details, which may change between package versions.

Note that simulation code depends on availability of suggested packages adaptivetau and deSolve.
If the dependency cannot be loaded then the value of the data set is NULL.

Usage

if (requireNamespace("deSolve"))
data(seir.ts01, package = "fastbeta")
else ...

if (requireNamespace("adaptivetau"))
data(seir.ts02, package = "fastbeta")
else ...

sir.aoi 17

Format

A “multiple time series” object, inheriting from class mts, always a subset of the result of a call to
seir, discarding transient behaviour. Simulation parameters may be preserved as attributes.

Source

Scripts sourced by data to reproduce the simulations are located in subdirectory ‘data’ of the
fastbeta installation; see, e.g. system.file("data", "seir.ts01.R", package = "fastbeta").

See Also

seir.

Examples

if (requireNamespace("deSolve")) withAutoprint({

data(seir.ts01, package = "fastbeta")
str(seir.ts01)
plot(seir.ts01)

})

if (requireNamespace("adaptivetau")) withAutoprint({

data(seir.ts02, package = "fastbeta")
str(seir.ts02)
plot(seir.ts02)

})

sir.aoi Solve the SIR Equations Structured by Age of Infection

Description

Numerically integrates the SIR equations with rates of transmission and recovery structured by age
of infection.

Usage

sir.aoi(from = 0, to = from + 1, by = 1,
R0, ell = 1, n = max(length(R0), length(ell)),
init = c(1 - init.infected, init.infected),
init.infected = .Machine[["double.neg.eps"]],
weights = rep(c(1, 0), c(1L, n - 1L)),
root = NULL, aggregate = FALSE, ...)

S3 method for class 'sir.aoi'
summary(object, tol = 1e-6, ...)

18 sir.aoi

Arguments

from, to, by passed to seq.int in order to generate an increasing, equally spaced vector of
time points in units of the mean time spent infectious.

R0 a numeric vector of length n such that sum(R0) is the basic reproduction number
and R0[j] is the contribution of infected compartment j. Otherwise, a numeric
vector of length 1, handled as equivalent to rep(R0/n, n).

ell a numeric vector of length n such that ell[j] is the ratio of the mean time
spent in infected compartment j and the mean time spent infectious; internally,
ell/sum(ell[R0 > 0]) is used, hence ell is determined only up to a positive
factor. Otherwise (and by default), a numeric vector of length 1, handled as
equivalent to rep(1, n).

n a positive integer giving the number of infected compartments. Setting n and
thus overriding the default expression is necessary only if the lengths of R0 and
ell are both 1.

init a numeric vector of length 2 giving initial susceptible and infected proportions.

init.infected a number in (0, 1] used only to define the default expression for init; see ‘Us-
age’.

weights a numeric vector of length n containing non-negative weights, defining the ini-
tial distribution of infected individuals among the infected compartments. By
default, all infected individuals occupy the first compartment.

root a function returning a numeric vector of length 1, with formal arguments (tau,
S, I, Y, dS, dI, dY, R0, ell) (or a subset); otherwise, NULL.

aggregate a logical indicating if infected compartments should be aggregated.

... optional arguments passed to lsoda.

object an R object inheriting from class sir.aoi, typically the value of a call to sir.aoi.

tol a positive number giving an upper bound on the relative change (from one time
point to the next) in the slope of log prevalence, defining time windows in which
growth or decay of prevalence is considered to be exponential.

Details

The standard SIR equations with rates of transmission and recovery structured by age of infection
are

dS /dt = −
∑

j(βj/N)SIj

dI1 /dt =
∑

j(βj/N)SIj − γ1I1

dIj+1/dt = γjIj − γj+1Ij+1

dR /dt = γnIn

where N = S +
∑

j Ij + R is the (constant, positive) population size. Nondimensionalization
using parameters N = 1, R0,j = βj/γj , and ℓj = (1/γj)/

∑
j:R0,j>0(1/γj) and time unit τ =

sir.aoi 19

t/
∑

j:R0,j>0(1/γj), gives

dS /dτ = −
∑

j(R0,j/ℓj)SIj

dI1 /dτ =
∑

j(R0,j/ℓj)SIj − (1/ℓ1)I1

dIj+1/dτ = (1/ℓj)Ij − (1/ℓj+1)Ij+1

dR /dτ = (1/ℓn)In

sir.aoi works with the nondimensional equations, dropping the last equation (which is redundant
given R = 1 − S −

∑
j Ij) and augments the resulting system of 1 + n equations with a new

equation
dY/dτ = (

∑
j

R0,jS − 1)
∑

j:R0,j>0

Ij

due to the usefulness of the solution Y in applications.

Value

root = NULL a “multiple time series” object, inheriting from class sir.aoi and transitively
from class mts. Beneath the class, it is a length(seq(from, to, by))-by-
(1+n+1) numeric matrix of the form cbind(S, I, Y).

root = function (tau, S, I, Y, dS, dI, dY, R0, ell)
a numeric vector of length 1+1+n+1 of the form c(tau, S, I, Y) storing the
root of the function root in units of the mean time spent infectious and the state
at that time. Attribute curvature stores the curvature of Y at the root. If a root
is not found between times from and to, then the value is NULL.

If aggregate = TRUE, then infected compartments are aggregated so that the number of columns
(elements, if root is a function) named I is 1 rather than n. This column or element stores preva-
lence, the proportion of the population that is infected. For convenience, there are 2 additional
columns (elements) named I.E and I.I. These store the non-infectious and infectious components
of prevalence, as indicated by sign(R0), hence I.E + I.I = I.

The method for summary returns a numeric vector of length 2 containing the left and right “tail
exponents”, defined as the asymptotic values of the slope of log prevalence. NaN elements indicate
that a tail exponent cannot be approximated from the prevalence time series represented by object,
because the time window does not cover enough of the tail, where the meaning of “enough” is set
by tol.

Note

sir.aoi is not a special case of sir nor a generalization. The two functions were developed
independently and for different purposes: sir.aoi to validate analytical results concerning the SIR
equations as formulated here, sir to simulate incidence time series suitable for testing fastbeta.

Examples

if (requireNamespace("deSolve")) withAutoprint({

to <- 100; by <- 0.01; R0 <- c(0, 16); ell <- c(0.5, 1)

peak <- sir.aoi(to = to, by = by, R0 = R0, ell = ell,

20 smallpox

root = function (S, R0) sum(R0) * S - 1,
aggregate = TRUE)

peak

to <- 4 * peak[["tau"]] # a more principled endpoint

soln <- sir.aoi(to = to, by = by, R0 = R0, ell = ell,
aggregate = TRUE)

head(soln)

plot(soln) # dispatching stats:::plot.ts

plot(soln[, "Y"], ylab = "Y")
abline(v = peak[["tau"]], h = peak[["Y"]],

lty = 2, lwd = 2, col = "red")

xoff <- function (x, k) x - x[k]
lamb <- summary(soln)
k <- c(16L, nrow(soln)) # c(1L, nrow(soln)) suffers due to transient
plot(soln[, "I"], log = "y", ylab = "Prevalence")
for (i in 1:2)
lines(soln[k[i], "I"] * exp(lamb[i] * xoff(time(soln), k[i])),

lty = 2, lwd = 2, col = "red")

wrap <-
function (root)
sir.aoi(to = to, by = by, R0 = R0, ell = ell,

root = root, aggregate = TRUE)
Ymax <- peak[["Y"]]

NB: want *simple* roots, not *multiple* roots
F <- list(function (Y) (Y - Ymax * 0.5) ,

function (Y) (Y - Ymax * 0.5)^2,
function (Y) (Y - Ymax) ,
function (Y) (Y - Ymax)^2)

lapply(F, wrap)

NB: critical values can be attained twice
F <- list(function (Y, dY) if (dY > 0) Y - Ymax * 0.5 else 1,

function (Y, dY) if (dY < 0) Y - Ymax * 0.5 else 1)
lapply(F, wrap)

})

smallpox Smallpox Mortality in London, England, 1661-1930

Description

Time series of deaths due to smallpox, deaths due to all causes, and births in London, England,
from 1661 to 1930, as recorded in the London Bills of Mortality and the Registrar General’s Weekly

smallpox 21

Returns.

Usage

data(smallpox, package = "fastbeta")

Format

A data frame with 13923 observations of 5 variables:

from start date of the record.

nday length of the record, which is the number of days (typically 7) over which deaths and births
were counted.

smallpox count of deaths due to smallpox.

allcauses count of deaths due to all causes.

births count of births.

Source

A precise description of the data set and its correspondence to the original source documents is
provided in the reference.

A script generating the smallpox data frame from a CSV file accompanying the reference is avail-
able as system.file("scripts", "smallpox.R", package = "fastbeta").

References

Krylova, O. & Earn, D. J. D. (2020). Patterns of smallpox mortality in London, England, over three
centuries. PLOS Biology, 18(12), Article e3000506, 1-27. doi:10.1371/journal.pbio.3000506

Examples

data(smallpox, package = "fastbeta")
str(smallpox)
table(smallpox[["nday"]]) # not all 7 days, hence:
plot(7 * smallpox / as.double(nday) ~ from, smallpox, type = "l")

https://doi.org/10.1371/journal.pbio.3000506

Index

bug.report, 2, 13

data, 17
deconvolve, 2, 4, 7, 10

fastbeta, 2, 4, 6, 8, 10, 19
fastbeta-package, 2
fastbeta.bootstrap, 6
fastbeta.matrix, 8

help, 2

lsoda, 13, 18

mts, 4, 5, 7, 8, 10, 11, 14, 17, 19

ptpi, 9

seir, 6, 7, 12, 16, 17
seir.auxiliary, 14, 15
seir.ee (seir.auxiliary), 15
seir.jacobian (seir.auxiliary), 15
seir.library, 14, 16
seir.R0 (seir.auxiliary), 15
seir.ts01 (seir.library), 16
seir.ts02 (seir.library), 16
seq.int, 18
sir, 19
sir (seir), 12
sir.aoi, 17
smallpox, 20
ssa.adaptivetau, 13
summary, 19
summary.sir.aoi (sir.aoi), 17
system.file, 17, 21

tsp, 5, 7

22

	fastbeta-package
	deconvolve
	fastbeta
	fastbeta.bootstrap
	fastbeta.matrix
	ptpi
	seir
	seir.auxiliary
	seir.library
	sir.aoi
	smallpox
	Index

