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Summary

General-to-Specific (GETS) modelling provides a comprehensive, systematic and cumula-
tive approach to modelling that is ideally suited for conditional forecasting and counterfac-
tual analysis, whereas Indicator Saturation (ISAT) is a powerful and flexible approach to the
detection and estimation of structural breaks (e.g. changes in parameters), and to the de-
tection of outliers. In both methods multi-path backwards elimination, single and multiple
hypothesis tests on the coefficients, diagnostics tests and goodness-of-fit measures are com-
bined to produce a parsimonious final model. In many situations a specific model or estima-
tor is needed, a specific set of diagnostics tests may be required, or a specific fit criterion is
preferred. In these situations, if the combination of estimator/model, diagnostics tests and
fit criterion is not offered in a pre-programmed way by publicly available software, then
the implementation of user-specified GETS and ISAT methods puts a large programming-
burden on the user. To reduce this burden, the R package gets provides a complete set of
facilities and generic functions for user-specified GETS and ISAT methods: User-specified
model/estimator, user-specified diagnostics and user-specified goodness-of-fit criteria. This
vignette explains and illustrates how user-specified GETS and ISAT methods can be created
with the R package gets.
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1 Introduction

General-to-Specific (GETS) modelling provides a comprehensive, systematic and cumula-
tive approach to modelling that is ideally suited for scenario analysis, e.g. conditional fore-
casting and counterfactual analysis. To this end, well-known ingredients (tests of coeffi-
cients, multi-path backwards elimination, diagnostics tests and fit criteria) are combined
to produce a parsimonious final model that passes the chosen diagnostics. GETS mod-
elling originated at the London School of Economics (LSE) during the 1960s, and gained
widespread acceptance and usage in economics during the 1980s and 1990s. The two-
volume article collection by Campos et al. (2005) provides a comprehensive historical overview
of key-developments in GETS modelling. Software-wise, a milestone was reached in 1999,
when the data-mining experiment of Lovell (1983) was re-visited by Hoover and Perez
(1999). They showed that automated GETS modelling could improve substantially upon
the then prevalent modelling approaches. The study spurred numerous new studies and
developments, including Indicator Saturation (ISAT) methods, see Hendry et al. (2008) and
Castle et al. (2015). ISAT methods provide a powerful and flexible approach to the detec-
tion and estimation of structural breaks (e.g. changes in parameters), and to the detection of
outliers.

On CRAN, there are two packages that provide GETS methods. The second, named gets,
is simply the successor of the first, which is named AutoSEARCH.3 Since October 2014 the
development of AutoSEARCH is frozen, and all development efforts have been directed
towards the gets package.4 An introduction to the gets package is provided by Pretis et al.
(2018). However, it does does not cover the user-specification capabilities of the package,
some of which were not available at the time.

At the time of writing (August 2021), the publicly available softwares that provide GETS
and ISAT methods are contained in Table 1. Although they offer GETS and ISAT methods
for some of the most popular models in applications, in many situations a specific model
or estimator will be needed, a specific set of diagnostics tests may be required, or a specific
fit criterion is preferred. In these situations, if the combination of estimator/model, diag-
nostics tests and fit criterion is not offered in a pre-programmed way by the publicly avail-
able softwares, then the implementation of user-specified GETS and ISAT methods puts a
large programming-burden on the user. To reduce this burden, generic functions and pro-
cedures that facilitate the implementation of user-specified GETS and ISAT methods for
specific problems can therefore be of great benefit. The R package gets, since version 0.20
(September 2019), is the first software – both inside and outside the R universe – to provide
a complete set of facilities and generic functions for user-specified GETS and ISAT methods:
User-specified model/estimator, user-specified diagnostics and user-specified goodness-of-
fit criteria. The aim of this vignette is to illustrate how user-specified GETS and ISAT meth-
ods can be implemented.

The rest of this vignette contains three sections. In the next the model selection properties

3Both packages were created by the me. Originally, I simply wanted to rename the first to the name of the
second. This, however, is inconvenient in practice I was told, so I was instead asked by CRAN to publish a
“new" package with the new name.

4See the Gitub page for the current development version of the package: https://github.com/gsucarrat/
gets/.
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HP1999
(MATLAB)

Autometrics
(OxMetrics)

Grocer
(Scilab)

genspec
(STATA)

EViews gets
(R)

More than 10 paths Yes Yes Yes Yes Yes
GETS of linear regression Yes Yes Yes Yes Yes Yes
GETS of variance models Yes
GETS of logit models Yes Yes
GETS of count models Yes
GETS of probit models Yes Yes
GETS of panel models Yes Yes
GETS of MIDAS models Yes
ISAT of linear regression Yes Yes Yes Yes
User-specified GETS Yes Yes
User-specified ISAT Yes
User-specified diagnostics Yes Yes
User-specified goodness-of-fit Yes
Menu-based GUI Yes Yes
Free and open source Yes∗ Yes Yes∗ Yes

Table 1: A comparison of publicly available GETS and ISAT softwares with emphasis on
user-specification capabilities. HP1999, the MATLAB code of Hoover and Perez (1999). Au-
tometrics, OxMetrics version 15, see Doornik and Hendry (2018). Grocer, version 1.8, see
Dubois and Michaux (2019). genspec, version 1.2.2, see Clarke (2014). EViews, version 12,
see IHS Markit (2020). gets, version 0.29, see Sucarrat et al. (2021), and Pretis et al. (2018).
∗The modules in themselves are free and open source, but they run in non-free and closed
source software environments (MATLAB and STATA, respectively).
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of GETS and ISAT methods are summarised. This is followed by a section that outlines
the general principles of how user-specified estimation, user-specified diagnostics and user-
specified goodness-of-fit measures are implemented. Next, a section with four illustrations
follows.

2 Model selection properties of GETS and ISAT methods

It is useful to denote a generic model for observation t as

m (yt, xt, β) , t = 1, 2, . . . , n, (1)

where yt is the dependent variable, xt = (x1t, x2t, . . .)′ is a vector of covariates, β = (β1, β2, . . .)′

is a vector of parameters to be estimated and n is the sample size. Two examples are the lin-
ear regression model and the logit-model:

yt = β1x1t + · · ·+ βkxkt + εt, (2)

Pr (yt = 1|xt) =
1

1 + exp (−ht)
with ht = β1x1t + · · ·+ βkxkt. (3)

Note that, in a generic model m(yt, xt, β), the dimension β is usually – but not necessarily –
equal to the dimension of xt. Here, unless otherwise stated, they will both have dimension
k.

In (2)–(3), a variable xjt ∈ xt is said to be relevant if β j 6= 0 and irrelevant if β j = 0. Let
krel ≥ 0 and kirr ≥ 0 denote the number of relevant and irrelevant variables, respectively,
such that krel + kirr = k. GETS modelling aims at finding a specification that contains as
many relevant variables as possible, and a proportion of irrelevant variables that on average
equals the significance level α chosen by the investigator. Put differently, if k̂rel and k̂irr
are the retained number of relevant and irrelevant variables in an empirical application,
respectively, then GETS modelling aims at satisfying

E
(

k̂rel/krel

)
→ 1 and E

(
k̂irr/kirr

)
→ α as n→ ∞, (4)

when krel, kirr > 0. If either krel = 0 or kirr = 0, then the targets are modified in natural
ways: If krel = 0, then the first target is E(k̂rel) = 0, and if kirr = 0, then the second target
is E(k̂irr) = 0. Sometimes, the irrelevance proportion k̂irr/kirr is also referred to as gauge,
whereas the relevance proportion k̂irr/kirr is also referred to as potency.

In targeting a relevance proportion equal to 1 and an irrelevance proportion equal to
α, GETS modelling combines well-known ingredients: Multi-path backwards elimination,
tests on the β j’s (both single and multiple hypothesis tests), diagnostics tests and fit-measures
(e.g. information criteria). Let V(β̂) denote the estimated coefficient-covariance matrix.
GETS modelling in the package gets can be described as proceeding in three steps:5

5The exact way GETS modelling is implemented across softwares varies.
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1. Formulate a General Unrestricted Model (GUM), i.e. a starting model, that passes a
set of chosen diagnostic tests. A regressor xj in the GUM is non-significant if the p-
value of a two-sided t-test is lower than the chosen significance level α, and each non-
significant regressor constitutes the starting point of a backwards elimination path.
The test-statistics of the t-tests are computed as β̂ j/se(β̂ j), where se(β̂ j) is the square
root of the jth. element of the diagonal of V(β̂).

2. Undertake backwards elimination along multiple paths by removing, one-by-one, non-
significant regressors as determined by the chosen significance level α. Each removal
is checked for validity against the chosen set of diagnostic tests, and for parsimonious
encompassing (i.e. a multiple hypothesis test) against the GUM. These multiple hy-
pothesis tests on subsets of β are implemented as Wald-tests.

3. Multi-path backwards elimination can result in multiple terminal models. The last
step of GETS modelling consists of selecting, among the terminal models, the specifi-
cation with the best fit according to a fit-criterion, e.g. the Schwarz (1978) information
criterion.

In ISAT methods, the vector xt contains at least n − 1 indicators in addition to other
covariates that are considered. Accordingly, standard estimation methods are infeasible,
since the number of variables in xt is usually larger than the number of observations n.
The solution to this problem provided by ISAT methods is to first organise xt into B blocks:
x(1)t , . . . , x(B)

t . These blocks need not be mutually exclusive, so a variable or subset of vari-
ables can appear in more than one block. Next, GETS modelling is applied to each block,
which leads to B final models. Finally, a new round of GETS modelling is undertaken with
the union of the retained variables from the B blocks as covariates in a new starting model
(i.e. a new GUM). The model selection properties targeted by ISAT methods are the same as
those of GETS methods. Note, however, that since the starting model (the GUM) contains
at least n − 1 regressors, a tiny significance level – e.g. α = 0.001 or smaller – is usually
recommended in ISAT methods.

3 General principles

In the current version of the package gets, version 0.28, the functions that admit user-
specified estimation are arx(), getsFun(), blocksFun() and isat(). The user-specification
principles are the same in all four. However, if the result (i.e. a list) returned from the
user-specified estimator does not have the same structure as that returned from the default
estimator ols() (part of the gets package), then arx() and isat() may not always work as
expected. This is particularly the case with respect to their extraction functions, e.g. print(),
coef(), residuals() and predict(). User-specified diagnostics and goodness-of-fit func-
tions are optional. By default, getsFun(), blocksFun() and isat() do not perform any
diagnostics tests, whereas the default in arx(), getsm() and getsv() is to test the standard-
ised residuals for autocorrelation and Autoregressive Heteroscedasticity (ARCH). This is
implemented via the diagnostics() function (part of the gets package). Also by default,
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all four functions use the Schwarz (1978) information criterion as goodness-of-fit measure,
which favours parsimony, via the infocrit() function (part of the gets package).

3.1 The getsFun() function

The recommended, most flexible and computationally most efficient approach to user-specified
GETS modelling is via the getsFun() function. Currently, it accepts up to twenty-five argu-
ments. For the details of all these arguments, the reader is referred to the discussion of
the getsm() function (Section 5) in Pretis et al. (2018), and the help pages of getsFun() (type
?getsFun). For the purpose of user-specified estimation, user-specified diagnostics and user-
specified goodness-of-fit measures, the most important arguments are:

getsFun(y, x,
user.estimator = list(name = "ols"),
user.diagnostics = NULL,
gof.function = list(name = "infocrit", method = "sc"),
gof.method = c("min", "max"),
...)

The y is the left-hand side variable (the regressand), x is the regressor or design matrix,
user.estimator controls which estimator or model to use and further arguments – if any
– to be passed on to the estimator, user.diagnostics controls the user-specified diagnos-
tics if any, and gof.function and gof.method control the goodness-of-fit measure used.
Note that y and x should satisfy is.vector(y) == TRUE and is.matrix(x) == TRUE, respec-
tively, and enter in “clean" ways: If either y or x are objects of class, say, "ts" or "zoo", then
getsFun() may not behave as expected. By default, the estimator ols() is used with its de-
fault arguments, which implements OLS estimation via the qr() function. The value NULL on
user.diagnostics means no diagnostics checks are undertaken by default. The following
code illustrates getsFun() in linear regression (the default), and reproduces the information
printed while searching:

n <- 40 #number of observations
k <- 20 #number of Xs

set.seed(123) #for reproducibility
y <- rnorm(n) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

#do gets w/default estimator ols(), store output in ’result’:
result <- getsFun(y, x)

#the information printed during searching:
18 path(s) to search
Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The object named result is a list, and the code summary(results) returns a summary of its
contents. The most important items are:
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• paths: A list of vectors containing the searched paths. Each vector (i.e. path) indicates
the sequence of deletion of the regressors. In the example above the first path is

$paths[[1]]
[1] 1 15 6 7 3 14 11 16 4 2 8 12 5 9 20 19 13

That is, regressor no. 1 was the first to be deleted, regressor no. 15 was the second,
regressor no. 6 was the third, and so on. If the regressors in x were named, then a
name-representation of the first deletion path can be obtained with colnames(x)[
paths[[1]] ].

• terminals: A list of vectors with the distinct terminal models of the specification
search. In the example above it is equal to

$terminals
$terminals[[1]]
[1] 10 17 18

$terminals[[2]]
[1] 10 18

That is, two terminal models. The first contains regressors 10, 17 and 18, whereas the
second contains regressors 10 and 18.

• terminals.results: A data frame with the goodness-of-fit information of the terminal
models. In the above example the entry is equal to:

$terminals.results
info(sc) logl n k

spec 1: 2.514707 -44.76081 40 3
spec 2: 2.529923 -46.90958 40 2

spec 1 is short for specification 1, i.e. terminal model 1, and spec 2 is short for spec-
ification 2, i.e. terminal model 2. info(sc) indicates that the Schwarz (1978) criterion
(the default) is used as goodness-of-fit measure, whereas n and k denote the number
of observations and parameters, respectively.

• best.terminal: An integer that indicates which terminal model is the best according
to the goodness-of-fit criterion used. In the example above the value is 1.

• specific.spec: A vector of integers that indicates which regressors that are contained
in the best terminal model. In the above example it is

$specific.spec
[1] 10 17 18

That is, the best terminal model contains regressors no. 10, 17 and 18.
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3.2 User-specified estimation

User-specified estimation is carried out via the user.estimator argument. It must be a list
containing at least one entry – a character – named name with the name of the estimator
to be called. Optionally, the list can also contain an item named envir, a character, which
indicates the environment in which the user-specified estimator resides. If unspecified, then
the function is looked for in the usual way by R. Additional entries in the list, if any, are
passed on to the estimator as arguments.

The user-specified estimator must also satisfy the following:

1. It should be of the form myEstimator(y, x) or myEstimator(y, x, ...), where y is a
vector, x is a matrix and ... means the user-estimator can accept further arguments
(optional) that are passed on to the estimator. In other words, while the name of the
function is arbitrary, the first argument should be the regressand and the second a
matrix (e.g. of covariates).

2. The user-defined estimator should return a list with a minimum of six items:

• n (the number of observations)

• k (the number of coefficients)

• df (degrees of freedom, used in the t-tests)

• coefficients (a vector with the coefficient estimates)

• vcov (the coefficient covariance matrix)

• logl (a goodness-of-fit value, e.g. the log-likelihood)

The items need not appear in this order. However, the naming should be exactly as
indicated. If also the diagnostics and/or the goodness-of-fit criterion is user-specified,
then additional objects may be required, see the subsections below on user-specified
diagnostics and goodness-of-fit criteria. Note also that, if the goodness-of-fit criterion
is user-specified, then logl can in certain situations be replaced by another item that
needs not be named logl.

3. The user-defined estimator must be able to handle NULL regressor-matrices, i.e. situ-
ations where either NCOL(x) is 0 or is.null(x) is TRUE. This is needed in situations
where a terminal model is empty (i.e. no regressors are retained).

To illustrate how the requirements above can be met in practice, suppose – as an example –
that we would like to use the function lm() for estimation rather than ols(). The first step
is then to make an “interface" function that calls lm() while satisfying requirements 1 to 3:

lmFun <- function(y, x, ...){

##create list:
result <- list()

##n, k and df:
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result$n <- length(y)
if( is.null(x) || NCOL(x) == 0 ){

result$k <- 0
}else{

result$k <- NCOL(x)
}
result$df <- result$n - result$k

##call lm if k > 0:
if( result$k > 0){

tmp <- lm(y ~ x - 1)
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- sum(dnorm(y, sd = sqrt(var(y)), log = TRUE))

}

##return result:
return(result)

}

Next, the code

getsFun(y, x, user.estimator = list(name = "lmFun"))

undertakes the same specification search as earlier, but uses lmFun() rather than ols().

3.3 User-specified diagnostics

User-specified diagnostics is carried out via the user.diagnostics argument. By default, the
argument is NULL, so no diagnostic tests are undertaken. To carry out user-specified diag-
nostics tests, the argument must be a list containing at least two entries: A character named
name containing the name of the diagnostics function to be called, and an entry named pval
that contains a vector with values between 0 and 1, i.e. the chosen significance level(s) for
the diagnostics test(s).6 If only a single test is undertaken by the diagnostics function, then

6A word of caution is required. Let R(i) denote the event of rejecting the null, under the null, for a sig-
nificance level α(i) in diagnostic test i. For example, if only a single test is undertaken so that i = 1, then
Pr(R(1)) = α(1). If two tests are undertaken, however, then the probability of rejecting in one or both tests is
Pr
(

R(1) ∪ R(2)
)

. As rule of thumb, therefore, to control the overall error, it is recommended that the signifi-
cance level of each diagnostic test is set equal to α/m, where α is the overall or total significance level targeted
by the user, and m is the number of diagnostic tests. This is sometimes referred to as a Bonferroni correction.
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pval should be of length one. If two tests are undertaken, then pval should be of length two.
And so on. An example of the argument when only a single test is undertaken is:

user.diagnostics = list(name = "myDiagnostics", pval = 0.05))

That is, the name of the function is myDiagnostics, and the chosen significance level for the
single test that is carried out is 5%. Optionally, just as when the estimator is user-specified,
the list can contain an item named envir, a character, which indicates the environment in
which the user-specified diagnostics function resides. Additional items in the list, if any, are
passed on to the user-specified function as arguments.

The user-specified diagnostics function must satisfy the following:

1. It should be of the form myDiagnostics(result) or myDiagnostics(result, ...),
where result is the list returned from the estimator in question, e.g. that of the user-
specified estimator (recall requirement 2 in the previous section above), and ... means
the function can accept further arguments (optional) that are passed on.

2. It should return an m× 3 matrix that contains the p-value(s) of the test(s) in the third
column, where m ≥ 1 is the number of tests carried out. So if only a single test is
carried out, then m = 1 and the p-value should be contained in the third column. An
example could look like:

statistic df pval
normality NA NA 0.0734

Note that the row-names and column-names in the example are not required. How-
ever, they do indicate what kind of information you may wish to put there for report-
ing purposes, e.g. by using the function diagnostics() (part of the gets package).

To illustrate how the requirements can be met in practice, suppose we would like to ensure
the residuals are normal by testing for non-normality with the Shapiro-Wilks test function
shapiro.test(). In this context, its main argument is the residuals of the estimated model.
The list returned by the user-defined estimator named lmFun() above, however, does not
contain an item with the residuals. The first step, therefore, is to modify the estimator
lmFun() so that the returned list also contains the residuals:

lmFun <- function(y, x, ...){

##info needed for estimation:
result <- list()
result$n <- length(y)
if( is.null(x) || NCOL(x)==0 ){

result$k <- 0
}else{

result$k <- NCOL(x)
}
result$df <- result$n - result$k
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if( result$k > 0){
tmp <- lm(y ~ x - 1)
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- sum(dnorm(y, sd=sqrt(var(y)), log=TRUE))

}

##residuals:
if( result$k > 0){

result$residuals <- residuals(tmp)
}else{

result$residuals <- y
}

##return result:
return(result)

}

Computationally, the only modification appears under ##residuals. We can now make the
user-specified diagnostics function:

myDiagnostics <- function(x, ...){
tmp <- shapiro.test(x$residuals) #do the test
result <- rbind( c(tmp$statistic, NA, tmp$p.value) )
return(result)

}

The following code undertakes GETS modelling with the user-specified estimator defined
above, and the user-specified diagnostics function using a 5% significance level for the latter:

getsFun(y, x, user.estimator = list(name = "lmFun"),
user.diagnostics = list(name = "myDiagnostics", pval = 0.05))

Note that if the chosen significance level for the diagnostics is sufficiently high, then no spec-
ification search is undertaken because the starting model does not pass the non-normality
test. With the current data, for example, a little bit of trial and error reveals this is the case
for a level of about pval = 0.35.

3.4 User-specified goodness-of-fit

User-specified goodness-of-fit is carried out with the gof.function and gof.method argu-
ments. The former indicates which Goodness-of-Fit (GOF) function to use, and the second
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is a character that indicates whether the best model maximises ("max") or minimises ("min")
the GOF criterion in question. The argument gof.function is a list with a structure similar
to earlier: It must contain at least one entry, a character named name, with the name of the
GOF function to call. An example is:

gof.function = list(name = "myGof"))

Optionally, also here the list can contain an item named envir, a character, which indicates
the environment in which the user-specified GOF function resides. Also as earlier, addi-
tional items in the list are passed on to the user-specified GOF function as arguments. The
default value, for example, gof.function = list(name = "infocrit", method = "sc"),
means the argument method = "sc" is passed on to the function infocrit(), see the help
pages of infocrit() (type ?infocrit) for information on the methods available via this
function. The user-specified GOF function must satisfy the following:

1. It should be of the form myGof(result) or myGof(result, ...), where result is the
list returned from the estimator in question, e.g. that of the user-specified estimator,
and ... means the function can accept further arguments (optional) that are passed
on.

2. It should return a single numeric value, i.e. the value of the GOF measure in question.

To illustrate how the requirements can be met in practice, suppose we would like to use the
adjusted R2 as our GOF measure in combination with our user-defined estimator. For the
moment, the user-defined estimator lmFun() does not contain the information necessary to
compute the adjusted R2. In particular, it lacks the regressand y. However, this is readily
added:

lmFun <- function(y, x, ...){

##info needed for estimation:
result <- list()
result$n <- length(y)
if( is.null(x) || NCOL(x)==0 ){

result$k <- 0
}else{

result$k <- NCOL(x)
}
result$df <- result$n - result$k
if( result$k > 0){

tmp <- lm(y ~ x - 1)
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
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result$logl <- sum(dnorm(y, sd=sqrt(var(y)), log=TRUE))
}

##residuals:
if( result$k > 0){

result$residuals <- residuals(tmp)
}else{

result$residuals <- y
}

##info needed for r-squared:
result$y <- y

##return result:
return(result)

}

The added part appears under ##info needed for r-squared. A GOF function that returns
the adjusted R2 is:

myGof <- function(object, ...){
TSS <- sum((object$y - mean(object$y))^2)
RSS <- sum(object$residuals^2)
Rsquared <- 1 - RSS/TSS
result <- 1 - (1 - Rsquared) * (object$n - 1)/(object$n - object$k)
return(result)

}

The following code undertakes GETS modelling with all the three user-specified functions
defined so far:

getsFun(y, x, user.estimator = list(name = "lmFun"),
user.diagnostics = list(name = "myDiagnostics", pval = 0.05),
gof.function = list(name = "myGof"), gof.method = "max")

Incidentally, it leads to the same final model as when the default GOF function is used.

3.5 The blocksFun() function

The blocksFun() function was added to the package gets in version 0.24 (July 2020). It en-
ables block-based GETS modelling with user-specified estimator, diagnostics and goodness-
of-fit criteria, and one of its main attractions is that it can handle more variables than ob-
servations n. This is not possible in getsFun(). Currently, blocksFun() accepts up to 31
arguments, most of which are the same as those of getsFun() (type ?blocksFun for the de-
tails). In particular, the main principles outlined above in Sections 3.1 to 3.4 also apply to
blocksFun().
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The following code illustrates the basic usage of blocksFun() in a situation where the
number of regressors is larger than the number of observations:

n <- 40 #number of observations
k <- 60 #number of Xs
set.seed(123) #for replicability
y <- rnorm(n) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

#do block-based gets w/default estimator ols(), store output in ’result’:
result <- blocksFun(y, x)

#the information printed during searching:
x block 1 of 2:
30 path(s) to search
Searching: 1 2 3 ... 29 30

x block 2 of 2:
30 path(s) to search
Searching: 1 2 3 ... 29 30

The printed information during search is from the first round of the block-based GETS
modelling. The information states that the original regressor matrix xt was divided into
2 blocks, and then GETS-modelling was applied to each of the blocks. An internal al-
gorithm is used to split xt, and the algorithm can be tweaked via the arguments blocks,
no.of.blocks, max.block.size and ratio.threshold, type ?blocksFun for the details. For
complete control of the block-composition, use the argument blocks. In the list returned
by blocksFun(), i.e. the object named result in the example above, the exact composition
of the blocks produced by the internal algorithm is contained in the entry named blocks.
Just as for getsFun(), the final specification is contained in the entry named specific.spec.
However, note that here the entry is now a list rather than a vector.

The argument x argument can also be specified as a list of matrices, for example:

xlist <- list(x1=x[,5:30], x2=x[,26:50])
blocksFun(y, xlist)

This is useful when it makes sense to group subsets of variables together. Note that, as the
example indicates, one or more regressors can enter more than one matrix or “group".

3.6 More speed: turbo, max.paths and parallel computing

In multi-path backwards elimination search, one may frequently arrive at a specification that
has already been estimated and tested. As an example, consider the following two paths:

$paths[[1]]
[1] 2 4 3 1 5
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$paths[[2]]
[1] 4 2 3 1 5

In path 1, i.e. paths[[1]], regressor no. 2 is the first to be deleted, regressor no. 4 is the
second, and so on. In path 2 regressor no. 4 is the first to be deleted, regressor no. 2 is the
second, and so on. In other words, after the deletion of the first two variables, the set of
remaining variables (i.e. 3, 1 and 5) in the two paths is identical. Accordingly, knowing the
result from the first path, in path 2 it is unnecessary to proceed further after having deleted
the first two regressors. Setting the argument turbo equal to TRUE turns such a check on, and
thus skips searches, estimations and tests that are unnecessary. The turbo comes at a small
computational cost (often less than 1 second), since the check is undertaken at each deletion.
This is why the default is turbo = FALSE in getsFun(). However, if the estimation time is
noticeable, then turning the turbo on can reduce the search time substantially. As a rule of
thumb, if each estimation takes 1 second or more, then turning the turbo on will (almost)
always reduce the total search time.

Searching more paths may increase the relevance proportion or potency. Whether and
to what extent this happens depends on the sample size n, and on the degree of multicolin-
earity among the regressors xt. If n is sufficiently large, or if the regressors are sufficiently
uncorrelated, then searching fewer paths will not reduce the relevance proportion. In many
situations, therefore, one may consider reducing the number of paths to increase the speed.
This is achieved via the max.paths argument. Setting max.paths = 10, for example, means
a maximum of 10 paths is searched. The paths that are searched are those of the 10 most
insignificant variables (i.e. those with the highest p-values) in the starting model.

The functions blocksFun() and isat() implement a two-round version of block-based
GETS modelling. In the first round the regressors xt are split into B blocks, and then GETS
modelling is undertaken on each block. This is a socalled “embarassingly parallel" problem.
To make isat search in parallel during the first round, simply set the argument parallel.options
equal to an integer greater than 1. The integer determines how many cores/threads to
use, and the command detectCores() can be used to find out how many cores/threads
that are available on the current machine. Remember, it is not recommended to use all
the cores/threads available. Within blocksFun() and isat(), parallel-computing is imple-
mented with the makeCluster() and parApply() functions from the package parallel. If the
time required by makeCluster() to set up parallel computing is negligible relative to the
total computing time (on an average computer the setup-time is about 1 second), then the
total computing time may – in optimal situations – be reduced by a factor of about m− 0.8,
where m > 1 is the number of cores/threads used for parallel computing.

4 Illustrations

4.1 GETS modelling of Generalised Linear Models (GLMs)

The function glm() enables the estimation of a large number of specifications within the
class of Generalised Linear Models (GLMs). Here, it is illustrated how GETS modelling can
be implemented with GLMs. To fix ideas, the illustration is in terms of the logit-model.
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Let yt ∈ {0, 1} denote the regressand of the logit-model given by

Pr (yt = 1|xt) =
1

1 + exp (−ht)
, ht = β′xt. (5)

Consider the following set of data:

n <- 40 #number of observations
k <- 20 #number of Xs
set.seed(123) #for reproducibility
y <- round(runif(40)) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

In other words, one regressand yt ∈ {0, 1}which is entirely independent of the 20 regressors
in xt. The following interface function enables GETS modelling of logit-models:

logitFun <- function(y, x, ...){

##create list:
result <- list()

##n, k and df:
result$n <- length(y)
if( is.null(x) || NCOL(x)==0 ){

result$k <- 0
}else{

result$k <- NCOL(x)
}
result$df <- result$n - result$k

##call glm if k > 0:
if( result$k > 0){

tmp <- glm(y ~ x - 1, family = binomial(link="logit"))
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- result$n*log(0.5)

}

##return result:
return(result)

}
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To undertake GETS modelling:

getsFun(y, x, user.estimator=list(name="logitFun"))

Two variables are retained, namely x5t and x11t, at the default significance level of 5% (i.e.
t.pval = 0.05). To reduce the chance of retaining irrelevant variables, the significance level
can be lowered to, say, 1% by setting t.pval = 0.01.

To implement GETS modelling for a different GLM model, only two lines of code must
be modified in the user-defined function above. The first is the line that specifies the family,
and the second is the one that contains the log-likelihood associated with the empty model
(i.e. the line result$logl <- result$n*log(0.5)).

4.2 Creating a gets() method (S3) for a model of class "lm"

The package gets provides the generic function gets(). This enables the creation of GETS
methods (S3) for models of arbitrary classes (type ?S3Methods for more info on S3 methods).
Here, this is illustrated for models of class "lm". Since version 0.28 (August 2021), the gets
package provides a method gets() for models of class "lm" (type ?gets.lm for the details).
So the example outlined here is purely for illustration purposes.

Suppose, for illustratory purposes, that a method gets() for models of class "lm" does
not exist, and that our aim is to be able to do the following:

mymodel <- lm(y ~ x)
gets(mymodel)

That is, to first estimate a model of class "lm" where x is a matrix of regressors, and then to
conveniently undertake GETS modelling by simply applying the code gets(.) to the named
object mymodel. To this end, a function named gets.lm() that relies on getsFun() must
be created. In doing so, a practical aspect is how to appropriately deal with the intercept
codewise. Indeed, as we will see, a notable part of the code in the user-defined function will
be devoted to the intercept. The reason for this is that lm() includes the intercept by default.
Another practical aspect is whether to use lm() or ols() whenever a model is estimated by
OLS (both employ the QR decomposition). The latter is simpler codewise, so here we opt
for the latter.7 The function is:

gets.lm <- function(object, ...){

##make y:
y <- as.vector(object$model[, 1])
yName <- names(object$model)[1]

##make x:
x <- as.matrix(object$model[, -1])
xNames <- colnames(x)
if(NCOL(x) == 0){

7The function gets.lm() that ships with gets since version 0.28 employs lm() only, not ols().
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x <- NULL
xNames <- NULL

}else{
if(is.null(xNames)){

xNames <- paste0("X", 1:NCOL(x))
colnames(x) <- xNames

}
}

##is there an intercept?:
if(length(coef(object)) > 0){

cTRUE <- names(coef(object))[1] == "(Intercept)"
if(cTRUE){

x <- cbind(rep(1, NROW(y)), x)
xNames <- c("(Intercept)", xNames)
colnames(x) <- xNames

}
}

##do gets:
myspecific <- getsFun(y, x, ...)

##which are the retained regressors?:
retainedXs <- xNames[myspecific$specific.spec]
cat("Retained regressors:\n ", retainedXs, "\n")

##return result
return(myspecific)

}

Next, recall the Data Generation Process (DGP) of the first experiment:

n <- 40 #number of observations
k <- 20 #number of Xs
set.seed(123) #for reproducibility
y <- rnorm(n) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

We can now do GETS modelling on models of class "lm" by simply applying the code gets()
on the object in question. As an example, the following code first stores an estimated model
of class "lm" in an object named startmodel, and then applies the newly defined function
gets.lm() to it:

startmodel <- lm(y ~ x)
finallm <- gets(startmodel)
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The information from the specification search is stored in the object called finallm, and
during the search the following is printed:

18 path(s) to search
Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Retained regressors:
X10 X17 X18

In other words, the retained regressors are no. 10, 17 and 18. Note that, due to the way the
user-defined function has been put together, the intercept is excluded from deletion. For a
comparison with the function gets.lm() available in the gets package since version 0.28,
type gets::gets.lm(startmodel).

4.3 Regression with ARMA error

The function arima() can be used to estimate a linear regression with deterministic regres-
sors and an error-term that follows an ARMA. An example is

yt = β′xt + εt, εt = φ1εt−1 + θ1ut−1 + ut, ut ∼WN
(

0, σ2
u

)
,

where xt is a vector of deterministic regressors and WN is short for White Noise. The error
εt is thus governed by an ARMA(1,1). Let xt denote a (deterministic) step-shift variable in
which the step-shift occurs at observation 30, i.e. xt = 1 (t ≥ 30). Next, consider the DGP
given by

yt = 4xt + εt, εt = 0.4εt−1 + 0.1ut−1 + ut, ut ∼ N (0, 1) , t = 1, . . . , n (6)

with n = 60. In other words, the series yt is non-stationary and characterised by a large
location shift at t = 30. Figure 1 illustrates the evolution of yt, which is generated with the
following code:

set.seed(123) #for reproducibility
eps <- arima.sim(list(ar = 0.4, ma = 0.1), 60) #epsilon
x <- coredata(sim(eps, which.ones = 30)) #step-dummy at t = 30
y <- 4*x + eps #the dgp
plot(y, ylab="y", xlab="t", lwd = 2)

By just looking at the graph, it seems clear that there is a location shift, but it is not so clear
that it in fact occurs at t = 30. I now illustrate how the arima() function can be used in
combination with getsFun() to automatically search for where the break occurs. The idea is
to do GETS modelling over a set or block of step-indicators that cover the period in which
the break visually appears to be in. Specifically, the aim is to apply GETS modelling to the
following starting model with 11 regressors:

yt =
11

∑
i=1

βi · 1{t≥24+i} + εt, εt = φ1εt−1 + θ1ut−1 + ut.

To this end, we first need to make the user-specified estimator:
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Figure 1: The graph of yt as given in (6).

myEstimator <- function(y, x){

##create list:
result <- list()

##estimate model:
if( is.null(x) || NCOL(x)==0 ){

result$k <- 0
tmp <- arima(y, order = c(1,0,1)) #empty model

}else{
result$k <- NCOL(x)
tmp <- arima(y, order = c(1,0,1), xreg = x)
result$coefficients <- tmp$coef[-c(1:3)]
result$vcov <- tmp$var.coef
result$vcov <- result$vcov[-c(1:3),-c(1:3)]

}

##rename and re-organise things:
result$n <- tmp$nobs
result$df <- result$n - result$k
result$logl <- tmp$loglik
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#return result:
return(result)

}

Note that the estimator has been put together such that the ARMA(1,1) specification of the
error εt is fixed. As a consequence, the specification search is only over the regressors. The
following code first creates the 11 step dummies, and then undertakes the GETS modelling:

xregs <- coredata(sim(eps, which.ones = 25:35)) #11 step-dummies
getsFun(y, xregs, user.estimator = list(name = "myEstimator"))

Two step-dummies are retained, namely those of t = 30 and t = 35.

4.4 Faster ISAT with large datasets

Block-based GETS modelling and ISAT methods in particular are computationally intensive.
This is particularly the case when the number of observations n is large in ISAT methods,
since at least n − 1 indicators are included as regressors. Accordingly, as n grows large,
purpose-specific estimators can greatly reduce the computing time. One way of building
such an estimator is by using tools from the package Matrix, see Bates and Maechler (2018).
The code below illustrates this. First it loads the library, and then it creates a function named
olsFaster() that re-produces the structure of the estimation result returned by the function
ols() with method = 3 (i.e. OLS with the ordinary coefficient-covariance), but with func-
tions from Matrix. The code is:

library(Matrix)
olsFaster <- function(y, x){

out <- list()
out$n <- length(y)
if (is.null(x)){ out$k <- 0 }else{ out$k <- NCOL(x) }
out$df <- out$n - out$k
if (out$k > 0) {

x <- as(x, "dgeMatrix")
out$xpy <- crossprod(x, y)
out$xtx <- crossprod(x)
out$coefficients <- as.numeric(solve(out$xtx,out$xpy))
out$xtxinv <- solve(out$xtx)
out$fit <- out$fit <- as.vector(x %*% out$coefficients)

}else{ out$fit <- rep(0, out$n) }
out$residuals <- y - out$fit
out$residuals2 <- out$residuals^2
out$rss <- sum(out$residuals2)
out$sigma2 <- out$rss/out$df
if (out$k > 0) { out$vcov <- as.matrix(out$sigma2 * out$xtxinv) }
out$logl <- -out$n * log(2 * out$sigma2 * pi)/2 - out$rss/(2 * out$sigma2)
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return(out)
}

Depending on the data and hardware/software configuration, the estimator may lead to
considerably speed-improvement. In the following example, the function system.time()
suggests a speed improvement of about 20% on the current hardware/software configura-
tion:

set.seed(123) #for reproducibility
y <- rnorm(1000)
x <- matrix(rnorm(length(y)*20), length(y), 20)

#with ols():
system.time( finalmodel <- isat(y, mxreg = x, max.paths = 5) )

#with olsFaster():
system.time( finalmodel <- isat(y, mxreg = x, max.paths = 5,

user.estimator = list(name = "olsFaster")) )
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