Title: Intraclass Correlation Coefficient for Count Data
Version: 1.1.2
Author: Josep L. Carrasco <jlcarrasco@ub.edu>
Maintainer: Josep L. Carrasco <jlcarrasco@ub.edu>
Depends: R (≥ 4.0)
Imports: glmmTMB, ggplot2, Deriv, gridExtra, VGAM, dplyr
Suggests: knitr, rmarkdown
Description: Estimates the intraclass correlation coefficient (ICC) for count data to assess repeatability (intra-methods concordance) and concordance (between-method concordance). In the concordance setting, the ICC is equivalent to the concordance correlation coefficient estimated by variance components. The ICC is estimated using the estimates from generalized linear mixed models. The within-subjects distributions considered are: Poisson; Negative Binomial with additive and proportional extradispersion; Zero-Inflated Poisson; and Zero-Inflated Negative Binomial with additive and proportional extradispersion. The statistical methodology used to estimate the ICC with count data can be found in Carrasco (2010) <doi:10.1111/j.1541-0420.2009.01335.x>.
VignetteBuilder: knitr
Encoding: UTF-8
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
LazyData: true
RoxygenNote: 7.2.3
NeedsCompilation: no
Packaged: 2024-02-28 13:27:41 UTC; jlcarrasco
Repository: CRAN
Date/Publication: 2024-02-28 14:40:02 UTC

CD34+ count cell data

Description

A dataset containing CD34+ count cell data obtained by two methods

Usage

AF

Format

A data frame with 40 rows and 3 variables:

y

CD34+ counts

id

Subject

met

Method

References

Fornas, O., Garcia, J., and Petriz, J. (2000). Flow cytometry counting of CD34+ cells in whole blood. Nature Medicine 6, 833–836.


Dispersion test for GLMM

Description

Dispersion test for GLMM

Usage

DispersionTest(x)

Arguments

x

An object of class GOF generated by GOF_check function.

Details

The function prints the dispersion of sample randomized quantile residuals (RQR) and the simulated P-value.

Value

A vector with the sample RQR dispersion and the P-value.

See Also

GOF_check()

Examples


# Poisson model. Repeatability setting.
iccpois<-icc_counts(EPP,y="Social",id="id")
iccpois.gof<-GOF_check(iccpois)
DispersionTest(iccpois.gof)


Sparrow fledglings paternity data

Description

A dataset containing the counts of fledglings a male had in every breeding season

Usage

EPP

Format

A data frame with 193 rows and 3 variables:

Social

Fledglings counts

id

Subject identifier

Year

Breeding season

References

Schroeder, J., Burke, T., Mannarelli, M. E., Dawson, D. A., & Nakagawa, S. (2012). Maternal effects and heritability of annual productivity. Journal of Evolutionary Biology, 25, 149– 156.


Goodness of fit for GLMM

Description

Assessment of goodness of fit for GLMM

Usage

GOF_check(x, nsim = 100, alpha = 0.05)

Arguments

x

An object of clas iccc.

nsim

Number of simulations to run. Default is set to 100.

alpha

Level of significance

Details

Randomized quantile residuals are computed for the fitted model. Simulations based on the fitted model are generated and the model is refitted to each simulated dataset. Envelopes for RQR are built as the appropriate quantile (in relation to the level fo significance) of RQR from the refitted models. Additionally, a test for dispersion and zero inflation are carried out by comparing the RQR dispersion and the number of zeros from the original model and data to those from the refitted models and simulated data.

Value

An object of class GOF for which method plot is available. A list with the following components:

See Also

plot.GOF(), DispersionTest(),ZeroTest()

Examples


# Poisson model. Repeatability setting.
iccpois<-icc_counts(EPP,y="Social",id="id")
GOF_check(iccpois)
# Zero-inflated Poisson model. Repeatability setting
icczip<-icc_counts(EPP,y="Social",id="id",fam="zip")
GOF_check(icczip)


Tick counts data

Description

A dataset containing the counts of ticks in Grimsö area

Usage

Grimso

Format

A data frame with 520 rows and 3 variables:

Tot

Tick counts

TransectID

Subject identifier

Round

Identifier of repeated measurements

References

Kjellander, P.L., Aronsson, M., Bergvall, U.A. et al. (2021). Validating a common tick survey method: cloth-dragging and line transects. Exp Appl Acarol 83, 131–146.


Prints the intraclass correlation coefficient

Description

Prints the intraclass correlation coefficient (ICC)

Usage

ICC(x, digits = getOption("digits"))

Arguments

x

An object of class iccc

digits

Number of digits to print

Value

A vector with the ICC estimate, its standard error and confidence interval.

See Also

icc_counts()

Examples

# Poisson model. Repeatability setting.
iccpois<-icc_counts(Grimso,y="Tot",id="TransectID")
ICC(iccpois)
# Negative Binomial with proportional extra-dispersion. Concordance setting
iccnb2<-icc_counts(AF,y="y",id="id",met="met",type="con",fam="nbinom2")
ICC(iccnb2)
# Zero-inflated Poisson model. Repeatability setting
icczip<-icc_counts(EPP,y="Social",id="id",fam="zip")
ICC(icczip)

GLMM variance components

Description

Prints the GLMM variance components and related parameters to estimate the intraclass correlation coefficient (ICC)

Usage

VarComp(x, digits = getOption("digits"))

Arguments

x

An object of class iccc

digits

Number of digits to print

Value

A vector with the variance components and related parameters

See Also

icc_counts()

Examples

# Poisson model. Repeatability setting.
iccpois<-icc_counts(Grimso,y="Tot",id="TransectID")
VarComp(iccpois)
# Negative Binomial with proportional extra-dispersion. Concordance setting
iccnb2<-icc_counts(AF,y="y",id="id",met="met",type="con",fam="nbinom2")
VarComp(iccnb2)
# Zero-inflated Poisson model. Repeatability setting
icczip<-icc_counts(EPP,y="Social",id="id",fam="zip")
VarComp(icczip)

Zero-Inflation test for GLMM

Description

Zero-Inflation test for GLMM

Usage

ZeroTest(x)

Arguments

x

An object of class GOF generated by GOF_check function.

Details

The function prints the count of zeros in the sample and the simulated P-value.

Value

A vector with the zero count and the P-value.

See Also

GOF_check()

Examples


# Poisson model. Repeatability setting.
iccpois<-icc_counts(EPP,y="Social",id="id")
iccpois.gof<-GOF_check(iccpois)
ZeroTest(iccpois.gof)
# Zero-inflated Poisson model. Repeatability setting
icczip<-icc_counts(EPP,y="Social",id="id",fam="zip")
icczip.gof<-GOF_check(icczip)
ZeroTest(icczip.gof)


Estimates GLMM. Concordance setting.

Description

Estimates the GLMM model for concordance setting

Usage

fit_model_con(
  data,
  fam = c("poisson", "nbinom2", "nbinom1", "zip", "zinb1", "zinb2")
)

Arguments

data

A data frame containing at least three columns: outcome (named as y), subject identifier (named as id) and method identifier (named as met).

fam

Character string. The within-subjects pdf to use. Valid options are: "poisson" (default) for Poisson pdf; "nbinom1" for Negative Binomial pdf with additive extradispersion; "nbinom2" for Negative Binomial pdf with proportional extradispersion; "zip" for zero-inflated Poisson pdf; "zinb1" for zero-inflated nbinom1 pdf; "zinb2" for zero-inflated nbinom2 pdf;

Value

An object of class glmmTMB with the model estimates.


Estimates GLMM. Repeatability setting.

Description

Estimates the GLMM model for concordance setting

Usage

fit_model_rep(
  data,
  fam = c("poisson", "nbinom2", "nbinom1", "zip", "zinb1", "zinb2")
)

Arguments

data

A data frame containing at least two columns: outcome (named as y) and subject identifier (named as id).

fam

Character string. The within-subjects pdf to use. Valid options are: "poisson" (default) for Poisson pdf; "nbinom1" for Negative Binomial pdf with additive extradispersion; "nbinom2" for Negative Binomial pdf with proportional extradispersion; "zip" for zero-inflated Poisson pdf; "zinb1" for zero-inflated nbinom1 pdf; "zinb2" for zero-inflated nbinom2 pdf;

Value

An object of class glmmTMB with the model estimates.


Intraclass correlation coefficient (ICC) for count data

Description

Estimates the intraclass correlation coefficient (ICC) for count data

Usage

icc_counts(
  data,
  y,
  id,
  met = NULL,
  type = c("rep", "con"),
  fam = c("poisson", "nbinom1", "nbinom2", "zip", "zinb1", "zinb2"),
  conf = 0.95
)

Arguments

data

A data frame containing at least two columns: outcome and subject identifier. In case of estimating the ICC for concordance setting, a third column with the method identifier will be needed.

y

Character string indicating the name of the outcome column in the dataset.

id

Character string indicating the name of the subjects column in the dataset.

met

Character string indicating the name of the methods column in the dataset. Only needed in the concordance setting.

type

Character string. It chooses the setting in which the ICC should be estimated. Valid values are: "rep" (default) for repeatability setting; "con" for concordance setting.

fam

Character string. The within-subjects pdf to use. Valid options are: "poisson" (default) for Poisson pdf; "nbinom1" for Negative Binomial pdf with variance increasing linearly with the mean; "nbinom2" for Negative Binomial pdf with variance increasing quadratically with the mean; "zip" for zero-inflated Poisson pdf; "zinb1" for zero-inflated Negative Binomial nbinom1 pdf; "zinb2" for zero-inflated Negative Binomial nbinom2 pdf;

conf

Confidence level for the confidence interval estimation. Default value is set to 95%.

Details

The intraclass correlation coefficient (ICC) is estimated using the variance components of a generalized linear mixed model (GLMM) (Carrasco, 2010).

The GLMM is estimated using the glmmTMB package (Brooks et al. 2017). The ICC standard error is estimated by applying the delta method (Ver Hoef, 2012) using the variance-covariance matrix of parameters involved in the ICC estimate.

The parameters involved in the estimation of the ICC depends on the within-subjects pdf family chosen: the between-subjects variance, the between-methods variability (in case of concordance analysis), and parameters implicated in the within-subjects family chosen. In all cases the output includes the overall expectation identified as mu; the between-subjects variance named as BSVar (log-scale); the between-methods variability (in case of concordance analysis) named as BMVar (log-scale).

In the Negative Binomial pdf with variance linearly increasing with the mean (Hardin and Hilbe, 2007),

Var(y_i)=\mu_i*(1+r)

and Negative Binomial pdf with variance quadratically increasing with the mean (Hardin and Hilbe, 2007)

Var(y_i)=\mu_i*(1+r*\mu_i)

the extra-dispersion parameter r is included in the output.

For zero-inflated models, the probability of observing an extra zero is included in the output as pi.

Value

An object of class iccc.The output is a list with the following components:

References

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M. and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400.

Carrasco, J. (2010). A Generalized Concordance Correlation Coefficient Based on the Variance Components Generalized Linear Mixed Models for Overdispersed Count Data. Biometrics, 66(3), 897-904.

W. Hardin and J. Hilbe. (2007). Generalized Linear Models and Extensions. Stata Press.

Ver Hoef, J.M. (2012) Who Invented the Delta Method?, The American Statistician, 66:2, 124-127,

Examples

# Poisson model. Repeatability setting.
iccpois<-icc_counts(Grimso,y="Tot",id="TransectID")
# Negative Binomial with proportional extra-dispersion. Concordance setting
iccnb2<-icc_counts(AF,y="y",id="id",met="met",type="con",fam="nbinom2")
# Zero-inflated Poisson model. Repeatability setting
icczip<-icc_counts(EPP,y="Social",id="id",fam="zip")

Goodness of fit plots

Description

Draws the plots to assess the goodness of fit

Usage

## S3 method for class 'GOF'
plot(x, type = c("all", "envelope", "dispersion", "zeros"), ...)

Arguments

x

An object of class GOF generated by GOF_check function.

type

Which plot to draw. Values: all (default); envelope for envelopes of randomized quantile residuals; dispersion for plot to assess the dispersion; zeros for plot to assess the zero inflation.

...

Ignore

See Also

GOF_check()

Examples


# Poisson model. Repeatability setting.
iccpois<-icc_counts(EPP,y="Social",id="id")
iccpois.gof<-GOF_check(iccpois)
plot(iccpois.gof)
plot(iccpois.gof,type="envelope")
plot(iccpois.gof,type="dispersion")
plot(iccpois.gof,type="zeros")


Bland-Altman plot

Description

Draws the Bland-Altman plot. The differences among pair of data from the same subject is represented on y-axis. The mean of data from the same subject is represented on x-axis. Additionally, a bar plot with the proportions of differences can be drawn.

Usage

plot_BA(data, y, id, rm = NULL, type = c("BA", "bars"))

Arguments

data

A data frame containing at least two columns: outcome and subject identifier.

y

Character string indicating the name of the outcome column in the data set.

id

Character string indicating the name of the subjects column in the data set.

rm

Optional. Character string indicating the name of column that stands for the repeated measurements from the same subjects in the dataset. Only needed to identify the differences in the Bland-Altman plot.

type

Character. Which plot has to be drawn? Default option is Bland-Altman plot ("BA" option). Alternatively, the bar plot of the proportion of the differences can be created ("bars" option).

Value

A list with the following components:

Examples

plot_BA(EPP,y="Social",id="id")
plot_BA(EPP,y="Social",id="id",rm="Year")
plot_BA(EPP,y="Social",id="id",type="bars")


ICC for Negative Binomial with additive extradispersion. Repeatability setting

Description

ICC for Negative Binomial with additive extradispersion. Repeatability setting

Usage

r_NB1(b1, b2, b3)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

Value

Scalar


ICC for Negative Binomial with additive extradispersion. Concordance setting

Description

ICC for Negative Binomial with additive extradispersion. Concordance setting

Usage

r_NB1_2(b1, b2, b3, sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

sb

Between-methods variability

Value

Scalar


ICC for Negative Binomial with proportional extradispersion. Repeatability setting

Description

ICC for Negative Binomial with proportional extradispersion. Repeatability setting

Usage

r_NB2(b1, b2, b3)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

Value

Scalar


ICC for Negative Binomial with proportional extradispersion. Concordance setting

Description

ICC for Negative Binomial with proportional extradispersion. Concordance setting

Usage

r_NB2_2(b1, b2, b3, sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

sb

Between-methods variability

Value

Scalar


ICC Poisson model. Repeatability setting

Description

ICC for Poisson model. Repeatability setting

Usage

r_Pois(b1, b2)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

Value

Scalar


ICC Poisson model. Concordance setting

Description

ICC for Poisson model. Concordance setting

Usage

r_Pois2(b1, b2, sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

sb

Between-methods variability

Value

Scalar


ICC for Zero-Inflated Negative Binomial with additive extradispersion. Repeatability setting

Description

ICC for Zero-Inflated Negative Binomial with additive extradispersion. Repeatability setting

Usage

r_ZINB1(b1, b2, b3, b4)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

Value

Scalar


ICC for Zero-Inflated Negative Binomial with additive extradispersion. Concordance setting

Description

ICC for Zero-Inflated Negative Binomial with additive extradispersion. Concordance setting

Usage

r_ZINB1_2(b1, b2, b3, b4, sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

sb

Between-methods variability

Value

Scalar


ICC for Zero-Inflated Negative Binomial with proportional extradispersion. Repeatability setting

Description

ICC for Zero-Inflated Negative Binomial with proportional extradispersion. Repeatability setting

Usage

r_ZINB2(b1, b2, b3, b4)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

Value

Scalar


ICC for Zero-Inflated Negative Binomial with proportional extradispersion. Concordance setting

Description

ICC for Zero-Inflated Negative Binomial with proportional extradispersion. Concordance setting

Usage

r_ZINB2_2(b1, b2, b3, b4, sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

sb

Between-methods variability

Value

Scalar


ICC Zero-Inflated Poisson model. Repeatability setting

Description

ICC for Zero-Inflated Poisson model. Repeatability setting

Usage

r_ZIP(b1, b2, b3)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra zero probability in the GLMM model

Value

Scalar


ICC Zero-Inflated Poisson model. Concordance setting

Description

ICC for Zero-Inflated Poisson model. Concordance setting

Usage

r_ZIP2(b1, b2, b3, sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra zero probability in the GLMM model

sb

Between-methods variability

Value

Scalar


ICC concordance

Description

Estimates the ICC for concordance setting for poisson, nbinom1 and nbinom2 families.

Usage

r_est_con(data, model)

Arguments

data

A data frame containing at least three columns: outcome (named as y), subject identifier (named as id) and method identifier (named as met).

model

A glmmTMB obejct.

Value

A data frame with ICC estimate, its standard error and variance components.


ICC concordance for zero-inflated models

Description

Estimates the ICC for concordance setting for zero-inflated models (poisson, nbinom1 and nbinom2 families).

Usage

r_est_con_zi(data, model)

Arguments

data

A data frame containing at least three columns: outcome (named as y), subject identifier (named as id) and method identifier (named as met).

model

A glmmTMB obejct.

Value

A data frame with ICC estimate, its standard error and variance components.


ICC repeatability

Description

Estimates the ICC for repeatability setting for poisson, nbinom1 and nbinom2 families.

Usage

r_est_rep(data, model)

Arguments

data

A data frame containing at least two columns: outcome (named as y) and subject identifier (named as id).

model

A glmmTMB obejct.

Value

A data frame with ICC estimate, its standard error and variance components.


ICC repeatability for zero-inflated models

Description

Estimates the ICC for repeatability setting for zero-inflated models (poisson, nbinom1 and nbinom2 families).

Usage

r_est_rep_zi(data, model)

Arguments

data

A data frame containing at least two columns: outcome (named as y) and subject identifier (named as id).

model

A glmmTMB obejct.

Value

A data frame with ICC estimate, its standard error and variance components.


RQR for GLMM Computes the randomized quantile residuals for GLMM

Description

RQR for GLMM Computes the randomized quantile residuals for GLMM

Usage

rqr(x)

Arguments

x

An object of clas iccc.

Details

Randomized quantile residuals (RQR) are computed for GLMMM. The within-cluster families considered are Poisson, Negative Binomial with additive and proportional extra-dispersion and their zero-inflated extensions. For further details on RQR see Dunn and Smyth (1996) and Feng et al (2020)

Value

A vector with the residuals.

References

Dunn PK, Smyth GK. (1996). Randomized quantile residuals. J Comput Graph Stat.5(3):236–44.

Feng et al. (2020). A comparison of residual diagnosis tools for diagnosing regression models for count data. BMC Medical Research Methodology 20:175


RQR for NegBin1 GLMM Computes the randomized quantile residuals for NegBin1 GLMM

Description

RQR for NegBin1 GLMM Computes the randomized quantile residuals for NegBin1 GLMM

Usage

rqr_nb1(x)

Arguments

x

An object of clas iccc.

Value

A vector with the residuals.


RQR for NegBin2 GLMM Computes the randomized quantile residuals for NegBin2 GLMM

Description

RQR for NegBin2 GLMM Computes the randomized quantile residuals for NegBin2 GLMM

Usage

rqr_nb2(x)

Arguments

x

An object of clas iccc.

Value

A vector with the residuals.


RQR for Poisson GLMM Computes the randomized quantile residuals for Poisson GLMM

Description

RQR for Poisson GLMM Computes the randomized quantile residuals for Poisson GLMM

Usage

rqr_pois(x)

Arguments

x

An object of clas iccc.

Value

A vector with the residuals.


RQR for ZINB1 GLMM Computes the randomized quantile residuals for ZINB1 GLMM

Description

RQR for ZINB1 GLMM Computes the randomized quantile residuals for ZINB1 GLMM

Usage

rqr_zinb1(x)

Arguments

x

An object of clas iccc.

Value

A vector with the residuals.


RQR for ZINB2 GLMM Computes the randomized quantile residuals for ZINB2 GLMM

Description

RQR for ZINB2 GLMM Computes the randomized quantile residuals for ZINB2 GLMM

Usage

rqr_zinb2(x)

Arguments

x

An object of clas iccc.

Value

A vector with the residuals.


RQR for ZIP GLMM Computes the randomized quantile residuals for ZIP GLMM

Description

RQR for ZIP GLMM Computes the randomized quantile residuals for ZIP GLMM

Usage

rqr_zip(x)

Arguments

x

An object of clas iccc.

Value

A vector with the residuals.


ICC standard error for Negative Binomial with a additive extradispersion. Repeatability setting

Description

ICC standard error for Negative Binomial with additive extradispersion. Repeatability setting

Usage

se_r_NB1(b1, b2, b3, CovB)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

CovB

Variance covariance matrix of b1, b2 and b3

Value

Scalar


ICC standard error for Negative Binomial with additive extradispersion. Repeatability setting

Description

ICC standard error for Negative Binomial with additive extradispersion. Repeatability setting

Usage

se_r_NB1_2(b1, b2, b3, sb, CovB, var.sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

sb

Between-methods variability

CovB

Variance covariance matrix of b1, b2 and b3

var.sb

Standard error of sb (in variance scale).

Value

Scalar


ICC standard error for Negative Binomial with proportional extradispersion. Repeatability setting

Description

ICC standard error for Negative Binomial with proportional extradispersion. Repeatability setting

Usage

se_r_NB2(b1, b2, b3, CovB)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

CovB

Variance covariance matrix of b1, b2 and b3

Value

Scalar


ICC standard error for Negative Binomial with proportional extradispersion. Repeatability setting

Description

ICC standard error for Negative Binomial with proportional extradispersion. Repeatability setting

Usage

se_r_NB2_2(b1, b2, b3, sb, CovB, var.sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

sb

Between-methods variability

CovB

Variance covariance matrix of b1, b2 and b3

var.sb

Standard error of sb (in variance scale).

Value

Scalar


ICC standard error for Poisson model. Repeatability setting

Description

ICC standard error for Poisson model. Repeatability setting

Usage

se_r_Pois(b1, b2, CovB)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

CovB

Variance covariance matrix of b1 and b2

Value

Scalar


ICC standard error for Poisson model. Concordance setting

Description

ICC standard error for Poisson model. Concordance setting

Usage

se_r_Pois2(b1, b2, sb, CovB, var.sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

sb

Between-methods variability

CovB

Variance covariance matrix of b1 and b2

var.sb

Standard error of sb (in variance scale).

Value

Scalar


ICC standard error for Zero-Inflated Negative Binomial with a additive extradispersion. Repeatability setting

Description

ICC standard error for Zero-Inflated Negative Binomial with additive extradispersion. Repeatability setting

Usage

se_r_ZINB1(b1, b2, b3, b4, CovB)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

CovB

Variance covariance matrix of b1, b2, b3 and b4

Value

Scalar


ICC standard error for Zero-Inflated Negative Binomial with additive extradispersion. Repeatability setting

Description

ICC standard error for Zero-Inflated Negative Binomial with additive extradispersion. Repeatability setting

Usage

se_r_ZINB1_2(b1, b2, b3, b4, sb, CovB, var.sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

sb

Between-methods variability

CovB

Variance covariance matrix of b1, b2, b3 and b4

var.sb

Standard error of sb (in variance scale).

Value

Scalar


ICC standard error for Zero-Inflated Negative Binomial with proportional extradispersion. Repeatability setting

Description

ICC standard error for Zero-Inflated Negative Binomial with proportional extradispersion. Repeatability setting

Usage

se_r_ZINB2(b1, b2, b3, b4, CovB)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

CovB

Variance covariance matrix of b1, b2, b3 and b4

Value

Scalar


ICC standard error for Zero-Inflated Negative Binomial with proportional extradispersion. Repeatability setting

Description

ICC standard error for Zero-Inflated Negative Binomial with proportional extradispersion. Repeatability setting

Usage

se_r_ZINB2_2(b1, b2, b3, b4, sb, CovB, var.sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra-dispersion in the GLMM model

b4

Parameter related to extra zero probability in the GLMM model

sb

Between-methods variability

CovB

Variance covariance matrix of b1, b2, b3 and b4

var.sb

Standard error of sb (in variance scale).

Value

Scalar


ICC standard error for Zero-Inflated Poisson model. Repeatability setting

Description

ICC standard error for Zero-Inflated Poisson model. Repeatability setting

Usage

se_r_ZIP(b1, b2, b3, CovB)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra zero probability in the GLMM model

CovB

Variance covariance matrix of b1,b2 and b3

Value

Scalar


ICC standard error for Zero-Inflated Poisson model. Concordance setting

Description

ICC standard error for Zero-Inflated Poisson model. Concordance setting

Usage

se_r_ZIP2(b1, b2, b3, sb, CovB, var.sb)

Arguments

b1

Intercept of GLMM

b2

Parameter related to between-subjects variance in the GLMM model

b3

Parameter related to extra zero probability in the GLMM model

sb

Between-methods variability

CovB

Variance covariance matrix of b1, b2 and b3.

var.sb

Standard error of sb (in variance scale).

Value

Scalar