## ----setup, include=FALSE, message=FALSE, warning=FALSE----------------------- knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, fig.retina = 3, comment = "#>" ) library(logitr) # Read in results from already estimated models so that the # examples aren't actually run when building this page, # otherwise it'll take much longer to build mxl_pref <- readRDS(here::here('inst', 'extdata', 'mxl_pref.Rds')) mxl_wtp <- readRDS(here::here('inst', 'extdata', 'mxl_wtp.Rds')) mxl_pref_cor <- readRDS(here::here('inst', 'extdata', 'mxl_pref_cor.Rds')) ## ----eval=FALSE--------------------------------------------------------------- # library("logitr") # # set.seed(456) # # mxl_pref <- logitr( # data = yogurt, # outcome = 'choice', # obsID = 'obsID', # panelID = 'id', # pars = c('price', 'feat', 'brand'), # randPars = c(feat = 'n', brand = 'n'), # numMultiStarts = 10 # ) ## ----------------------------------------------------------------------------- summary(mxl_pref) ## ----------------------------------------------------------------------------- wtp_mxl_pref <- wtp(mxl_pref, scalePar = "price") wtp_mxl_pref ## ----eval=FALSE--------------------------------------------------------------- # set.seed(6789) # # mxl_wtp <- logitr( # data = yogurt, # outcome = 'choice', # obsID = 'obsID', # panelID = 'id', # pars = c('feat', 'brand'), # scalePar = 'price', # randPars = c(feat = 'n', brand = 'n'), # numMultiStarts = 10, # startVals = wtp_mxl_pref$Estimate # ) ## ----------------------------------------------------------------------------- summary(mxl_wtp) ## ----------------------------------------------------------------------------- wtpCompare(mxl_pref, mxl_wtp, scalePar = 'price') ## ----eval=FALSE--------------------------------------------------------------- # library("logitr") # # set.seed(456) # # mxl_pref_cor <- logitr( # data = yogurt, # outcome = 'choice', # obsID = 'obsID', # panelID = 'id', # pars = c('price', 'feat', 'brand'), # randPars = c(feat = 'n', brand = 'n'), # numMultiStarts = 10, # correlation = TRUE # ) ## ----------------------------------------------------------------------------- summary(mxl_pref_cor)