Version: | 1.2-0 |
Title: | Multivariate AutoRegressive Analysis |
Description: | R functions for the estimation and eigen-decomposition of multivariate autoregressive models. |
Author: | Susana Barbosa |
Maintainer: | S. M. Barbosa <susana.barbosa@fc.up.pt> |
Date: | 2022-05-31 |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Depends: | MASS |
NeedsCompilation: | no |
Packaged: | 2022-05-31 17:46:41 UTC; susana |
Repository: | CRAN |
Date/Publication: | 2022-05-31 22:40:02 UTC |
Eigendecomposition of m-variate AR(p) model
Description
Eigen-decomposition of the estimated matrix of autoregressive coefficients from an m-variate AR(p) model
Usage
mAr.eig(A, C = NULL, ...)
Arguments
A |
matrix of estimated autoregression coefficients |
C |
noise covariance matrix |
... |
additional arguments for specific methods |
Value
A list with components:
modes |
periods and damping times associated to each eigenmode |
eigv |
m*p m-dimensional eigenvectors |
Author(s)
S. M. Barbosa
References
Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Examples
data(pinkham)
y=mAr.est(pinkham,2,5)
mAr.eig(y$AHat,y$CHat)
Estimation of multivariate AR(p) model
Description
Stepwise least-squares estimation of a multivariate AR(p) model based on the algorithm of Neumaier and Schneider (2001).
Usage
mAr.est(x, p, ...)
Arguments
x |
matrix of multivariate time series |
p |
model order |
... |
additional arguments for specific methods |
Details
Fits by stepwise least squares an m-variate AR(p) model given by
X[t]=w + A1 X[t-1] +...+ Ap X[t-p] +e[t]
where
X[t]=[X1(t)...Xm(t)]' is a vector of length m
w is a m-length vector of intercept terms
A=[A1 ... Ap] is a mp x m matrix of autoregressive coefficients
e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C
Value
A list with components:
SBC |
Schwartz Bayesian Criterion |
wHat |
vector of intercept terms |
AHat |
matrix of estimated autoregression coefficients for the fitted model |
CHat |
noise covariance matrix |
resid |
residuals from the fitted model |
Author(s)
S. M. Barbosa
References
Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
Examples
data(pinkham)
y=mAr.est(pinkham,2,5)
Multivariate autoregressive analysis in PCA space
Description
Estimation of m-variate AR(p) model in reduced PCA space (for dimensionality reduction) and eigen-decomposition of augmented coefficient matrix
Usage
mAr.pca(x, p, k = dim(x)[2], ...)
Arguments
x |
matrix of multivariate time series |
p |
model order |
k |
number of principal components to retain |
... |
additional arguments for specific methods |
Value
A list with components:
p |
model order |
SBC |
Schwartz Bayesian Criterion |
fraction.variance |
fraction of variance explained by the retained components |
resid |
residuals from the fitted model |
eigv |
m*p m-dimensional eigenvectors |
modes |
periods and damping times associated to each eigenmode |
Author(s)
S. M. Barbosa
References
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
See Also
Examples
data(sparrows)
A=mAr.est(sparrows,1)$AHat
mAr.eig(A)$modes
mAr.pca(sparrows,1,k=4)$modes
Simulation from a multivariate AR(p) model
Description
Simulation from an m-variate AR(p) model
Usage
mAr.sim(w, A, C, N, ...)
Arguments
w |
vector of intercept terms |
A |
matrix of AR coefficients |
C |
noise covariance matrix |
N |
length of output time series |
... |
additional arguments |
Details
Simulation from an m-variate AR(p) model given by
X[t]=w + A1 X[t-1] +...+ Ap X[t-p] +e[t]
where
X[t]=[X1(t)...Xm(t)]' is a vector of length m
w is a m-length vector of intercept terms
A=[A1 ... Ap] is a m x mp matrix of autoregressive coefficients
e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C
Value
returns a list containg the N simulated observations for each of the m time series
Author(s)
S. M. Barbosa
References
Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.
Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.
Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
Examples
w=c(0.25,0.1)
C=rbind(c(1,0.5),c(0.5,1.5))
A=rbind(c(0.4,1.2,0.35,-0.3),c(0.3,0.7,-0.4,-0.5))
x=mAr.sim(w,A,C,N=300)
Lydia Pinkham Annual Advertising and Sales data
Description
Annual domestic advertising and sales of Lydia E. Pinkham Medicine Company in thousands of dollars 1907-1960
Usage
data(pinkham)
Format
A data frame with 54 observations on the 2 variables.
Source
Pankratz, A. (1991) Forecasting With Dynamic Regression Models, Wiley.
References
Wei, W. (1994) Time series analysis - univariate and multivariate methods
Body measurements of sparrows
Description
Body measurements of 48 female sparrows.
Usage
data(sparrows)
Format
A data frame with 48 observations on 5 variables
Source
Manly, B. F. J. (1994). Multivariate Statistical Methods, second edition, Chapman and Hall.
Time series of ocean wave height measurements
Description
Ocean wave height measurements from an wire wave gauge and an infrared wave gauge
Usage
data(waves)
Format
A data frame with 4096 observations on the following 2 variables.
- wire.gauge
height of ocean waves from wire wave gauge
- ir.gauge
height of ocean waves from infrared wave gauge
Details
Time series of ocean wave height measurements (sampling = 1/ 30 seconds)
Source
Applied Physics Laboratory (Andy Jessup)
References
Jessup, A. T., Melville, W. K., Keller, W. C. (1991). Breaking Waves Affecting Microwave Backscatter: Detection and Verification (1991). Journal of Geophysical Research, 96, C11, 20,547–59.
Percival, D. B. (1993). Spectral Analysis of Univariate and Bivariate Time Series, Chapter 11 of "Statistical Methods for Physical Science," Stanford, J. L. and Vardeman, S. B. (Eds), Academic Press