Version: | 0.6-10 |
Date: | 2022-06-20 |
Title: | Symmetric Normalized Quadratic Profit Function |
Author: | Arne Henningsen |
Maintainer: | Arne Henningsen <arne.henningsen@gmail.com> |
Depends: | R (≥ 2.4.0) |
Suggests: | micEcon (≥ 0.6-1) |
Imports: | miscTools (≥ 0.6-1), systemfit (≥ 1.0-0), MASS |
Description: | Tools for econometric production analysis with the Symmetric Normalized Quadratic (SNQ) profit function, e.g. estimation, imposing convexity in prices, and calculating elasticities and shadow prices. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | http://www.micEcon.org |
NeedsCompilation: | no |
Packaged: | 2022-06-20 15:41:04 UTC; gsl324 |
Repository: | CRAN |
Date/Publication: | 2022-06-21 11:30:02 UTC |
Predictions from an SNQ profit function
Description
Returns the predicted values, their standard errors and the confidence limits of prediction for an Symmetric Normalized Quadratic (SNQ) profit function.
Usage
## S3 method for class 'snqProfitEst'
predict( object, newdata = object$data,
se.fit = FALSE, se.pred = FALSE, interval = "none", level = 0.95,
useDfSys = TRUE, ... )
## S3 method for class 'snqProfitImposeConvexity'
predict( object, newdata = object$data,
se.fit = FALSE, se.pred = FALSE, interval = "none", level = 0.95,
useDfSys = TRUE, ... )
Arguments
object |
an object of type |
newdata |
data frame in which to predict. |
se.fit |
logical. Return the standard error of the fitted values? |
se.pred |
logical. Return the standard error of prediction? |
interval |
Type of interval calculation ("none", "confidence" or "prediction"). |
level |
confidence level. |
useDfSys |
logical. Use the degrees of freedom of the whole system (and not the degrees of freedom of the single equation) to calculate the confidence intervals. |
... |
currently not used. |
Details
The variance of the fitted values
(used to calculate the standard errors of the fitted values
and the "confidence interval") is calculated by
Var[E[y^0]-\hat{y}^0]=x^0 \; Var[b] \; {x^0}'
The variances of the predicted values
(used to calculate the standard errors of the predicted values
and the "prediction intervals") is calculated by
Var[y^0-\hat{y}^0]=\hat{\sigma}^2+x^0 \; Var[b] \; {x^0}'
Value
predict.snqProfitEst
and predict.snqProfitImposeConvexity
return
a dataframe that
contains the predicted profit and for each netput the predicted quantities
(e.g. "quant1" ) and if requested
the standard errors of the fitted values (e.g. "quant1.se.fit"),
the standard errors of the prediction (e.g. "quant1.se.pred"),
and the lower (e.g. "quant1.lwr") and upper (e.g. "quant1.upr")
limits of the confidence or prediction interval(s).
Author(s)
Arne Henningsen
References
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Macmillan.
Gujarati, D. N. (1995) Basic Econometrics, Third Edition, McGraw-Hill.
Kmenta, J. (1997) Elements of Econometrics, Second Edition, University of Michigan Publishing.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
See Also
snqProfitEst
, snqProfitCalc
and predict
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms )
predict( estResult )
predict( estResult, se.fit = TRUE, se.pred = TRUE, interval = "confidence" )
}
Print output of estimated SNQ profit function
Description
This function prints a summary estimation results of a symmetric normalized quadraric (SNQ) profit function.
Usage
## S3 method for class 'snqProfitEst'
print( x, ... )
Arguments
x |
an object of class |
... |
arguments passed to |
Author(s)
Arne Henningsen
See Also
Examples
## Not run: library( systemfit )
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms )
print( estResult )
}
Residuals of an SNQ profit function
Description
Extract the residuals from the estimation of a Symmetric Normalized Quadratic (SNQ) profit function.
Usage
## S3 method for class 'snqProfitEst'
residuals( object, scaled = TRUE, ... )
## S3 method for class 'snqProfitImposeConvexity'
residuals( object, scaled = TRUE, ... )
Arguments
object |
an object of type |
scaled |
logical. Return scaled quantities? |
... |
currently not used. |
Value
residuals.snqProfitEst
and residuals.snqProfitEst
return a
dataframe that contains the residuals for each netput and the profit.
Author(s)
Arne Henningsen
See Also
snqProfitEst
, snqProfitImposeConvexity
and residuals
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms )
residuals( estResult )
residuals( estResult, scaled = FALSE )
}
Calculations with the SNQ Profit function
Description
Calculation of netput quantities and profit with the Symmetric Normalized Quadratic (SNQ) Profit function.
Usage
snqProfitCalc( priceNames, fixNames, data, weights,
scalingFactors = rep( 1, length( weights ) ), coef,
quantNames = NULL, form = 0 )
Arguments
priceNames |
a vector of strings containing the names of netput prices. |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fix inputs. |
data |
a data frame containing the data. |
weights |
vector of weights of the prices for normalization. |
quantNames |
optional vector of strings containing the names of netput quantities. |
scalingFactors |
factors to scale prices (and quantities). |
coef |
a list containing the coefficients alpha, beta, delta and gamma. |
form |
the functional form to be estimated (see |
Value
a data frame: the first n columns are the netput quantities, the last column is the profit.
Author(s)
Arne Henningsen
References
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
See Also
snqProfitEst
and snqProfitWeights
.
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
fixNames <- c( "land", "time" )
estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms )
snqProfitCalc( priceNames, fixNames, estResult$data, estResult$weights,
estResult$scalingFactors, estResult$coef )
}
Price Elasticities of SNQ Profit function
Description
Calculates the Price Elasticities of a Symmetric Normalized Quadratic (SNQ) profit function.
Usage
snqProfitEla( beta, prices, quant, weights,
scalingFactors = rep( 1, length( weights ) ),
coefVcov = NULL, df = NULL )
Arguments
beta |
matrix of estimated |
prices |
vector of netput prices at which the elasticities should be calculated. |
quant |
vector of netput quantities at which the elasticities should be calculated. |
weights |
vector of weights of prices used for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
coefVcov |
variance covariance matrix of the coefficients (optional). |
df |
degrees of freedom to calculate P-values of the elasticities (optional). |
Value
a list of class snqProfitEla
containing following elements:
ela |
matrix of the price elasticities. |
vcov |
variance covariance matrix of the price elasticities. |
stEr |
standard errors of the price elasticities. |
tval |
t-values of the price elasticities. |
pval |
P-values of the price elasticities. |
Note
A price elasticity is defined as
E_{ij} = \frac{ \displaystyle \frac{ \partial q_i }{ q_i } }
{ \displaystyle \frac{ \partial p_j }{ p_j } } =
\frac{ \partial q_i }{ \partial p_j } \cdot \frac{ p_j }{ q_i }
Thus, e.g. E_{ij}=0.5
means that if the price of netput j (p_j
)
increases by 1%, the quantity of netput i (q_i
) will
increase by 0.5%.
Author(s)
Arne Henningsen
See Also
Examples
# just a stupid simple example
snqProfitEla( matrix(101:109,3,3), c(1,1,1), c(1,-1,-1), c(0.4,0.3,0.3) )
# now with real data
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms )
estResult$ela # price elasticities at mean prices and mean quantities
# price elasticities at the last observation (1994/95)
snqProfitEla( estResult$coef$beta, estResult$data[ 20, priceNames ],
estResult$data[ 20, quantNames ], estResult$weights,
estResult$scalingFactors )
}
Estimation of a SNQ Profit function
Description
Estimation of a Symmetric Normalized Quadratic (SNQ) Profit function.
Usage
snqProfitEst( priceNames, quantNames, fixNames = NULL, instNames = NULL,
data, form = 0, base = 1, scalingFactors = NULL,
weights = snqProfitWeights( priceNames, quantNames, data, "DW92", base = base ),
method = ifelse( is.null( instNames ), "SUR", "3SLS" ), ... )
Arguments
priceNames |
a vector of strings containing the names of netput prices. |
quantNames |
a vector of strings containing the names of netput quantities (inputs must be negative). |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fixed inputs. |
instNames |
an optional vector of strings containing the names of instrumental variables (for 3SLS estimation). |
data |
a data frame containing the data. |
form |
the functional form to be estimated (see details). |
base |
the base period(s) for scaling prices (see details).
If argument |
scalingFactors |
a vector of factors to scale prices (see details). |
weights |
a vector of weights for normalizing prices. |
method |
the estimation method (passed to
|
... |
arguments passed to |
Details
The Symmetric Normalized Quadratic (SNQ) profit function is defined as
follows (this functional form is used if argument form
equals 0):
\pi \left( p, z \right) =
\sum_{i=1}^{n} \alpha_{i} p_{i} +
\frac{1}{2} w^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} p_{i} p_{j} +
\sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{ij} p_{i} z_{j} +
\frac{1}{2} w \sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_{ij} z_{i} z_{j}
with \pi
= profit, p_i
= netput prices,
z_i
= quantities of fixed inputs,
w=\sum_{i=1}^{n}\theta_{i}p_{i}
= price index for normalization,
\theta_i
= weights of prices for normalization, and
\alpha_i
, \beta_{ij}
, \delta_{ij}
and
\gamma_{ij}
= coefficients to be estimated.
The netput equations (output supply in input demand) can be obtained
by Hotelling's Lemma ( q_{i} = \left. \partial \pi \right/ \partial p_{i}
):
x_{i} = \alpha_{i} +
w^{-1} \sum_{j=1}^{n} \beta_{ij} p_{j} -
\frac{1}{2} \theta_{i} w^{-2} \sum_{j=1}^{n} \sum_{k=1}^{n}
\beta_{jk} p_{j} p_{k} +
\sum_{j=1}^{m} \delta_{ij} z_{j} +
\frac{1}{2} \theta_{i} \sum_{j=1}^{m} \sum_{k=1}^{m} \gamma_{jk} z_{j} z_{k}
In my experience the fit of the model is sometimes not very good,
because the effect of the fixed inputs is forced to be proportional
to the weights for price normalization \theta_i
.
In this cases I use following extended SNQ profit function
(this functional form is used if argument form
equals 1):
\pi \left( p, z \right) =
\sum_{i=1}^{n} \alpha_{i} p_{i} +
\frac{1}{2} w^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} p_{i} p_{j} +
\sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{ij} p_{i} z_{j} +
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{m}
\gamma_{ijk} p_i z_{j} z_{k}
The netput equations are now:
x_{i} = \alpha_{i} +
w^{-1} \sum_{j=1}^{n} \beta_{ij} p_{j} -
\frac{1}{2} \theta_{i} w^{-2} \sum_{j=1}^{n} \sum_{k=1}^{n}
\beta_{jk} p_{j} p_{k} +
\sum_{j=1}^{m} \delta_{ij} z_{j} +
\frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{m} \gamma_{ijk} z_{j} z_{k}
Argument scalingFactors
can be used to scale prices,
e.g. for improving the numerical stability of the estimation
(e.g. if prices are very large or very small numbers)
or for assessing the robustness of the results
when changing the units of measurement.
The prices are multiplied by the scaling factors,
while the quantities are divided my the scaling factors
so that the monetary values of the inputs and outputs
and thus, the profit, remains unchanged.
If argument scalingFactors
is NULL
,
argument base
is used to automatically obtain scaling factors
so that the scaled prices are unity in the base period or - if there
is more than one base period - that the
means of the scaled prices over the base periods are unity.
Argument base
can be either
(a) a single number: the row number of the base prices,
(b) a vector indicating several observations: The means of these
observations are used as base prices,
(c) a logical vector with length equal to the number of rows
of the data set that is specified by argument data
: The
means of the observations indicated as 'TRUE' are used as base prices, or
(d) NULL
: prices are not scaled.
If argument base
is NULL
,
argument weights
must be specified,
because the weights cannot be calculated
if the base period is not specified.
An alternative way to use unscaled prices
is to set argument scalingFactors
equal to a vector of ones
(see examples below).
If the scaling factors are explicitly specified
by argument scalingFactors
,
argument base
is not used for obtaining scaling factors
(but it is used for obtaining weights
if argument weights
is not specified).
Value
a list of class snqProfitEst
containing following objects:
coef |
a list containing the vectors/matrix of the estimated
coefficients: |
ela |
a list of class |
fixEla |
matrix of the fixed factor elasticities at mean prices and mean quantities. |
hessian |
hessian matrix of the profit function with respect to prices evaluated at mean prices. |
convexity |
logical. Convexity of the profit function. |
r2 |
|
est |
estimation results returned by |
weights |
the weights of prices used for normalization. |
normPrice |
vector used for normalization of prices. |
data |
data frame of originally supplied data. |
fitted |
data frame that contains the fitted netput quantities and the fitted profit. |
pMeans |
means of the scaled netput prices. |
qMeans |
means of the scaled netput quantities. |
fMeans |
means of the (quasi-)fixed input quantities. |
priceNames |
a vector of strings containing the names of netput prices. |
quantNames |
a vector of strings containing the names of netput quantities (inputs must be negative). |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fixed inputs. |
instNames |
an optional vector of strings containing the names of instrumental variables (for 3SLS estimation). |
form |
the functional form (see details). |
base |
the base period(s) for scaling prices (see details). |
weights |
vector of weights of the prices for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
method |
the estimation method. |
Author(s)
Arne Henningsen
References
Diewert, W.E. and T.J. Wales (1987) Flexible functional forms and global curvature conditions. Econometrica, 55, p. 43-68.
Diewert, W.E. and T.J. Wales (1992) Quadratic Spline Models for Producer's Supply and Demand Functions. International Economic Review, 33, p. 705-722.
Kohli, U.R. (1993) A symmetric normalized quadratic GNP function and the US demand for imports and supply of exports. International Economic Review, 34, p. 243-255.
See Also
snqProfitEla
and snqProfitWeights
.
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms )
estResult$ela # Oh, that looks bad!
# it it reasonable to account for technological progress
germanFarms$time <- c( 0:19 )
estResult2 <- snqProfitEst( priceNames, quantNames, c("land","time"),
data = germanFarms )
estResult2$ela # Ah, that looks better!
# estimation with unscaled prices
estResultNoScale <- snqProfitEst( priceNames, quantNames, c("land","time"),
data = germanFarms, scalingFactors = rep( 1, 3 ) )
print( estResultNoScale )
# alternative way of estimation with unscaled prices
estResultNoScale2 <- snqProfitEst( priceNames, quantNames, c("land","time"),
data = germanFarms, base = NULL,
weights = snqProfitWeights( priceNames, quantNames, germanFarms ) )
all.equal( estResultNoScale[-20], estResultNoScale2[] )
# please note that the SNQ Profit function is not invariant
# to units of measurement so that different scaling factors
# result in different estimates of elasticities:
all.equal( estResult2$ela, estResultNoScale$ela )
}
Fixed Factor Elasticities of SNQ Profit function
Description
Calculates the Fixed Factor Elasticities of a Symmetric Normalized Quadratic (SNQ) profit function.
Usage
snqProfitFixEla( delta, gamma, quant, fix, weights,
scalingFactors = rep( 1, length( weights ) ) )
Arguments
delta |
matrix of estimated |
gamma |
matrix of estimated |
quant |
vector of netput quantities at which the elasticities should be calculated. |
fix |
vector of quantities of fixed factors at which the elasticities should be calculated. |
weights |
vector of weights of prices used for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
Note
A fixed factor elasticity is defined as
E_{ij} = \frac{ \displaystyle \frac{ \partial q_i }{ q_i } }
{ \displaystyle \frac{ \partial z_j }{ z_j } } =
\frac{ \partial q_i }{ \partial z_j } \cdot \frac{ z_j }{ q_i }
Thus, e.g. E_{ij}=0.5
means that if the quantity of fixed factor j
(z_j
) increases by 1%, the quantity of netput i (q_i
) will
increase by 0.5%.
Author(s)
Arne Henningsen
See Also
snqProfitEst
and snqProfitEla
.
Examples
# just a stupid simple example
snqProfitFixEla( matrix(1:6/6,3,2 ), matrix(4:1/4,2 ), c(1,1,1), c(1,1),
c(0.4,0.3,0.3) )
# now with real data
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
fixNames <- c( "land", "time" )
estResult <- snqProfitEst( priceNames, quantNames, fixNames, data=germanFarms )
estResult$fixEla # price elasticities at mean quantities of netputs
# and fixed factors
# fixed factor elasticities at the last observation (1994/95)
snqProfitFixEla( estResult$coef$delta, estResult$coef$gamma,
estResult$data[ 20, quantNames ], estResult$data[ 20, fixNames ],
estResult$weights, estResult$scalingFactors )
}
SNQ Profit function: Hessian matrix
Description
Returns the Hessian (substitution) matrix of a Symmetric Normalized Quadratic (SNQ) Profit Function.
Usage
snqProfitHessian( beta, prices, weights,
scalingFactors = rep( 1, length( weights ) ) )
Arguments
beta |
matrix of the |
prices |
vector of netput prices at which the Hessian should be calculated. |
weights |
vector of weights of prices for normalization. |
scalingFactors |
factors to scale prices (and quantities). |
Author(s)
Arne Henningsen
See Also
snqProfitEst
, snqProfitEla
and
snqProfitHessianDeriv
.
Examples
# just a stupid simple example
snqProfitHessian( matrix(101:109,3,3), c(1,1,1), c(0.4,0.3,0.3) )
# now with real data
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms )
estResult$hessian # the Hessian at mean prices and mean quantities
# Hessian at the last observation (1994/95)
snqProfitHessian( estResult$coef$beta, estResult$data[ 20, priceNames ],
estResult$weights, estResult$scalingFactors )
}
SNQ Profit function: Derivatives of the Hessian
Description
Returns the matrix of derivatives of the vector of linear independent values of the Hessian with respect to the vector of the linear independent coefficients.
Usage
snqProfitHessianDeriv( prices, weights, nFix = 0, form = 0 )
Arguments
prices |
vector of netput prices at which the derivatives should be calculated. |
weights |
vector of weights for normalizing prices. |
nFix |
number of (quasi-)fix inputs. |
form |
the functional form to be estimated (see
|
Author(s)
Arne Henningsen
See Also
Examples
# just a stupid simple example
snqProfitHessianDeriv( c(1,2,3),c(0.4,0.3,0.3) )
# now with real data
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, c("land","time"), data=germanFarms )
snqProfitHessianDeriv( estResult$pMean, estResult$weights, 2 )
}
Imposing Convexity on a SNQ Profit function
Description
Imposing Convexity on a Symmetric Normalized Quadratic (SNQ) Profit function.
Usage
snqProfitImposeConvexity( estResult, rankReduction = 0,
start = 10, optimMethod = "BFGS", control = list( maxit=5000 ),
stErMethod = "none", nRep = 1000, verbose = 0 )
Arguments
estResult |
object returned by |
rankReduction |
an integer specifying the reduction of the rank
of the |
start |
starting values of the triangular Cholesky matrix. |
optimMethod |
method to be used by |
control |
list of control parameters passed to |
stErMethod |
method to compute standard errors, either 'none', 'resample', 'jackknife' or 'coefSim' (see details). |
nRep |
number of replications to compute the standard errors
if |
verbose |
an integer idicating the verbose level. |
Details
The procedure proposed by Koebel, Falk and Laisney (2000, 2003) is
applied to impose convexity in prices on an estimated symmetric
normalized quadratic (SNQ) profit function.
The standard errors of the restricted coefficients can be either
calculated by
bootstrap resampling ('resampling'),
jackknife ('jacknife') or
by simulating the distribution of the unrestricted coefficients
using its variance covariance matrix ('coefSim').
Value
a list of class snqProfitImposeConvexity
containing the same
objects as an object of class snqProfitEst
and additionally the objects:
mindist |
object returned by |
sim |
results of the simulation to obtain the standard errors of the estimated coefficients. |
Author(s)
Arne Henningsen
References
Koebel, B., M. Falk and F. Laisney (2000), Imposing and Testing Curvature Conditions on a Box-Cox Cost Function. Discussion Paper No. 00-70, ZEW, Mannheim, https://madoc.bib.uni-mannheim.de/515/1/dp0070.pdf.
Koebel, B., M. Falk and F. Laisney (2003), Imposing and Testing Curvature Conditions on a Box-Cox Cost Function. Journal of Business and Economic Statistics, 21, p. 319-335.
See Also
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
estResult <- snqProfitEst( priceNames, quantNames, "land", data = germanFarms )
estResult # Note: it is NOT convex in netput prices
estResultConvex <- snqProfitImposeConvexity( estResult )
estResultConvex # now it is convex
}
Shadow Prices of a SNQ Profit function
Description
Calculates the shadow prices of a Symmetric Normalized Quadratic (SNQ) profit function.
Usage
snqProfitShadowPrices( priceNames, fixNames, estResult = NULL,
data = estResult$data, weights = estResult$weights,
scalingFactors = estResult$scalingFactors,
coef = estResult$coef, form = estResult$form )
Arguments
priceNames |
a vector of strings containing the names of netput prices. |
fixNames |
an optional vector of strings containing the names of the quantities of (quasi-)fix inputs. |
estResult |
object returned by |
data |
a data frame containing the data. |
weights |
vector of weights of prices used for normalization. |
scalingFactors |
factors to scale prices (see details). |
coef |
a list containing the coefficients (at least delta and gamma). |
form |
the functional form to be estimated (see details). |
Author(s)
Arne Henningsen
See Also
snqProfitEst
, snqProfitCalc
and
snqProfitEla
.
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
germanFarms$time <- c( 0:19 )
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
fixNames <- c( "land", "time" )
estResult <- snqProfitEst( priceNames, quantNames, fixNames, data = germanFarms )
snqProfitShadowPrices( priceNames, fixNames, estResult )
}
SNQ Profit function: Weights of prices for normalization
Description
Returns a vector of weights to normalize prices on a Symmetric Normalized Quadratic (SNQ) Profit function.
Usage
snqProfitWeights( priceNames, quantNames, data, method = "DW92", base = 1 )
Arguments
priceNames |
a vector of strings containing the names of netput prices. |
quantNames |
a vector of strings containing the names of netput quantities. |
data |
a data frame containing the data. |
method |
the method to determine the weights (see details). |
base |
the base period(s) for scaling prices (see details). |
Details
If argument method
is 'DW92' the method of Diewert and
Wales (1992) is applied. They predetermine the weights by
\theta_{i} = \frac{
\displaystyle \left | \overline{x}_{i} \right| p_{i}^{0} }{
\displaystyle \sum_{i=1}^{n} \left| \overline{x}_{i} \right| p_{i}^{0}}
Defining the scaled netput quantities as
\widetilde{x}_{i}^{t} = x_{i}^{t}\cdot p_{i}^{0}
we get following formula:
\theta_{i} = \frac{
\displaystyle \left| \overline{ \widetilde{ x } }_{i} \right|}{
\displaystyle \sum_{i=1}^{n} \left| \overline{ \widetilde{ x } }_{i} \right|}
The prices are scaled that they are unity in the base period or - if there
is more than one base period - that the
means of the prices over the base periods are unity.
The argument base
can be either
(a) a single number: the row number of the base prices,
(b) a vector indicating several observations: The means of these
observations are used as base prices,
(c) a logical vector with the same length as the data
: The
means of the observations indicated as 'TRUE' are used as base prices, or
(d) NULL
: prices are not scaled.
Author(s)
Arne Henningsen
See Also
Examples
if( requireNamespace( 'micEcon', quietly = TRUE ) ) {
data( germanFarms, package = "micEcon" )
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
germanFarms$qVarInput <- -germanFarms$vVarInput / germanFarms$pVarInput
germanFarms$qLabor <- -germanFarms$qLabor
priceNames <- c( "pOutput", "pVarInput", "pLabor" )
quantNames <- c( "qOutput", "qVarInput", "qLabor" )
snqProfitWeights( priceNames, quantNames, germanFarms )
}