## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # nbc4vaGUI() ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # load the nbc4va package # # # View this help page as a vignette # browseVignettes("nbc4va") # # # Access details about certain functions # help("nbc4va") # access the nbc4va package docs # help("nbc4vaGUI") # access GUI details # help("nbc4vaIO") # access file in and out details # help("nbc") # access the nbc algorithm function # help("summary.nbc") # access the summary function # help("plot.nbc") # access the results plot function # # # Access details about example data # help("nbc4vaData") # help("nbc4vaDataRaw") # # # Alternative short forms # ?nbc4va # ?nbc4vaGUI # ?nbc4vaIO # ?nbc # ?nbc4vaData # ?nbc4vaDataRaw # ?summary.nbc # ?plot.nbc ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # citation("nbc4va") ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # load the package # nbc4vaGUI() # open the GUI in your web browser ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # # # Find paths to your "trainFile" and "testFile" # trainFile <- file.choose() # select train file first # testFile <- file.choose() # followed by test file after # # # Run NBC model # # Dump results to same directory as "testFile" # # Set "known"" to indicate whether testing causes are known # nbc4vaIO(trainFile, testFile, known=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # ?nbc4vaIO ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # # # Create training and testing dataframes # data(nbc4vaData) # example data # train <- nbc4vaData[1:50, ] # test <- nbc4vaData[51:100, ] # # # Train a nbc model # # The "results" variable is a nbc list-like object with elements accessible by $ # # Set "known" to indicate whether or not testing causes are known in "test" # results <- nbc(train, test, known=TRUE) # # # Obtain the probabilities and predictions # prob <- results$prob.causes # vector of probabilities for each test case # pred <- results$pred.causes # vector of top predictions for each test case # # # View the "prob" and "pred", the names are the case ids # head(prob) # head(pred) ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # ?nbc ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # # # Create training and testing dataframes # data(nbc4vaData) # train <- nbc4vaData[1:50, ] # test <- nbc4vaData[51:100, ] # # # Train a nbc model # results <- nbc(train, test, known=TRUE) # # # Automatically calculate metrics with summary # # The "brief" variable is a nbc_summary list-like object # # The "brief" variable is "results", but with additional metrics # brief <- summary(results) # # # Obtain the calculated metrics # metrics <- brief$metrics.all # vector of overall metrics # causeMetrics <- brief$metrics.causes # dataframe of metrics by cause # # # Access the calculatd metrics # metrics[["CSMFaccuracy"]] # metrics[["Sensitivity"]] # View(causeMetrics) ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # ?summary.nbc ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # # # Create training and testing data # data(nbc4vaData) # train <- nbc4vaData[1:50, ] # test <- nbc4vaData[51:100, ] # # # Train a nbc model and plot the top 5 causes if possible # results <- nbc(train, test, known=TRUE) # plot(results, top=5) # plot(results, top=5, footnote=FALSE) # remove footnote ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # ?plot.nbc ## ----eval=FALSE--------------------------------------------------------------- # library(nbc4va) # load the nbc4va package # data(nbc4vaData) # load the example data # View(nbc4vaData) # view the sample data in the nbc4va package # data(nbc4vaDataRaw) # load the example data with unknown symptom values # View(nbc4vaDataRaw) # view the sample data with unknown symptom values