
Non-homogeneous Markov and misclassification hidden Markov

multi-state modelling in R

Andrew C. Titman

Department of Mathematics and Statistics

Lancaster University, U.K.

a.titman@lancaster.ac.uk

Abstract

Multi-state models are a useful approach for modelling event history data in which an individual makes transitions

between a series of states over time. A Markov assumption is often made in such models and for intermittently

observed data the models are usually parametric. The nhm package allows non-homogeneous Markov models with

smoothly changing transition intensities to be fitted to intermittently observed data through direct numerical solution

of the differential equations defining the transition probabilities. Misclassification type hidden Markov models with

non-homogeneous transition intensities can also be fitted. The package permits models with log-linear time trends

(Gompertz type intensities) to be fitted, Weibull intensities or B-spline intensity functions to be specified directly. In

addition, users may also supply their own function for the generator function of transition intensities and its derivatives

to allow bespoke models to be fitted. This manual provides a brief overview of the underlying theory behind non-

homogeneous Markov and misclassification hidden Markov models and also gives a tutorial on the typical use of

nhm.

1 Introduction

The likelihood for Markov models on intermittently observed data requires computation of the transition probabilities,

which are the solution of the Kolmogorov Forward Equations (KFE) a system of ordinary differential equations

defined by the transition intensities [2]. For time homogeneous models where the intensities are constant, the KFE

define a linear system of equations and hence the transition probabilities can be calculated by computing a matrix

exponential. Moreover, the transition probabilities for models with piecewise constant intensities can also be found

1

in matrix analytic form by computing matrix exponentials with respect to each time period in which the intensities

are constant and combining them using the Chapman-Kolmogorov equations. Models using these matrix analytic

formulations can be fitted efficiently using the msm package [5]. However, the assumption of time homogeneity is

often not plausible and models with piecewise constant intensities are potentially sensitive to the choice of cut points.

2 Underlying methods

The underlying methods implemented by the package overlap heavily with those of the msm package [5] and the

reader is encouraged to consult the msm package manual and references therein for a basic introduction to intermit-

tently observed time homogeneous multi-state models. See in particular, Kalbfleisch and Lawless (1985) [7] and

Jackson et al (2003) [6] for the seminal papers for Markov and misclassification-type Markov models, respectively.

The key extension that nhm accommodates is the ability to fit models where the transition intensities may be smooth

functions of time.

The likelihood for an individual observed in states x0, x1, . . . , xm at times t0, t1, . . . , tm can be expressed as

L(θ) =

m∏
j=1

P(X(tj) = xj |X(tj−1) = xj−1;θ) =

m∏
j=1

pxj−1xj (tj−1, tj ;θ)

Let P(t0, t;θ) be the matrix of transition probabilities such that {P(t0, t)}rs = prs(t0, t;θ) then for a general

non-homogeneous Markov model, these transition probabilities satisfy the initial value problem

dP(t0, t;θ)

dt
= P(t0, t;θ)Q(t;θ), P(t0, t0;θ) = I

where Q(t;θ) is the generator matrix of transition intensities. Following the approach proposed in Titman (2011),

nhm uses direct numerical solution of this system of differential equations to compute the likelihood. For additional

efficiency in optimization, Titman (2011) proposed to solve the extended system of differential equations, incorporat-

ing the systems of equations defining the derivatives with respect to the parameter vector θ:

dP′(t0, t;θ)

dt
= P′(t0, t;θ)Q(t;θ) + P(t0, t;θ)Q′(t;θ), P′(t0, t0;θ) = 0

where

P′(t0, t0;θ) =
∂P(t0, t;θ)

∂θ
and Q′(t;θ) =

∂Q(t;θ)

∂θ
,

so that the first derivatives of the likelihood can be calculated. The differential equations are solved by using the

LSODA routine [10] of the deSolve package [11], which automatically selects appropriate methods to allow for stiff

differential equations, if necessary.

2

2.1 Misclassification type hidden Markov models

For misclassification type hidden Markov models, forward recursion is used to compute the likelihood contribution

for an individual. Let ers = P (Oj = s|Xj = r) be the (r, s) entry of the misclassification matrix. Then for a subject

with observed states O1, . . . , Om at times t1, . . . , tm, forward weights are defined as αk(j) for observation number

k = 1, . . . ,m and state j = 1, . . . , R, where

α1(j) = P(O1, X1 = j) = π0jej,O1 ,

where π0j is the jth entry of π0, and subsequent forward weights are calculated recursively:

αk(j) = P(O1, . . . , Ok, Xk = j) =

R∑
i=1

αk−1(i)ej,Okpij(tk−1, tk;θ).

Then the likelihood for that subject is given by

P(O1, . . . , Om) =

R∑
i=1

αm(i).

To compute the first derivatives, an extended forward recursion is used as proposed by Lystig and Hughes (2002)

[8] in the context of discrete time hidden Markov models. If we further define

φk(θu, j) =
∂αk(j)

∂θu
=

∂

∂θu
P(O1, . . . , Ok, Xk = j)

then this allows φk(θu, j) to be calculated recursively as

φk(θu, j) =

R∑
i=1

(
φk−1(θu, i)ejOkpij(tk−1, tk;θ) +

αk−1(i)
∂ej,Ok

∂θu
+ αk−1(i)ej,Ok

∂pij(tk−1, tk;θ)

∂θu

)
.

(2.1)

The first derivative of the likelihood for the subject is then given as

∂P(O1, . . . , Om)

∂θu
=

R∑
i=1

φm(θu, i).

3 Model specification: model.nhm

The purpose of the function model.nhm is to define model objects which may then be used in the main function,

nhm. model.nhm puts the supplied data into a standardized format, builds functions for computing the generator or

intensity matrix and its derivatives and, in the case of misclassification models, also creates functions for computing

the misclassification probabilities and initial state occupation probabilities.

3.1 Identification of key variables

The formula argument follows the same syntax as used in the msm package. A formula should be provided

where the left hand side identifies the state variable and the right hand side identifies the time variable. For example

3

formula = state ~ years implies that the observed states are stored in a column named state while the

corresponding observation times are in a column years.

The data argument identifies the name of the data frame in which the data are stored. Note that this cannot

be omitted. The subject argument identifies the name of the subject identifier variable within the data frame.

The covariates argument should be a character vector giving the names of the covariates that are used in the

model. These variables should be columns within the data data frame. Note that these covariates could be used in

either the model for the transition intensities or, in the case of misclassification models, for covariate effects on the

misclassification probabilities or initial state probabilities.

3.2 Generator matrix type

The type argument specifies the type of non-homogeneous model for the generator or intensity matrix of the Markov

process. The possible values are 'gompertz', 'weibull', 'bspline' and 'bespoke'.

Gompertz type

A 'gompertz' type model leads to models where some or all of the intensities are of the form

qrs(t; z) = exp(θrs + βrs(t− t̄) + γ
′
rsz)

where βrs defines a log-linear trend in intensity with respect to time, with the model reducing to time homogeneity

if βrs = 0. Here, t̄ is an optional centring term which reparametrizes θrs to refer to the baseline intensity value at

t = t̄ rather than 0. Such centring can be specified using the optional argument centre_time and usually helps

with convergence of the maximum likelihood algorithm.

Weibull type

A 'weibull' type model leads to models where some or all of the intensities are of the form

qrs(t; z) = λrsαrs(λrst)
αrs−1 exp(γ

′
rsz)

where αrs > 0 is the shape parameter, λrs > 0 the rate parameter. A time homogeneous model arises with αrs = 1.

In nhm, in order to allow the likelihood to be maximized via unconstrained optimization, the model is parametrized

in terms of the log-shape, ars, and log-rate, θrs,

qrs(t; z) = exp
{
θrs exp(ars) + (exp(ars)− 1) log t+ γ

′
rsz
}
.

4

B-spline type

A 'bspline' type model leads to models where some or all of the intensities are of the form

qrs(t; z) = exp
{
θrs + ν

′
rsB(t) + γ

′
rsz
}

(3.1)

where B(t) is the vector of B-spline basis functions at time t for a B-spline of a certain order with certain knot

points, implying the overall effect of time is represented by a spline function that is a smooth piecewise polynomial.

Note that this specification differs slightly from that used in Titman (2011).

The knot points for the spline are specified using the argument splinelist. This should be a list of length

equal to the number of distinct spline effects in the model, of vectors which specify the location of the knots of the

spline (including the boundary knots). By default the splines are of degree 3, but this can be modified by using the

degrees argument.

Note that for identifiability or estimability, it is often sensible to set the upper boundary knot to be below the

maximum follow-up time in the dataset. In this case the model fitted replaces B(t) with B(t∧ tu) in (3.1), where tu

is the upper boundary knot. Effectively this means the intensity is assumed constant after the upper boundary knot.

A worked example of a B-spline model is given in Section 5.6.

Bespoke type

If a non-homogeneous model not built into the package is desired, the 'bespoke' type can be specified. To fit

a bespoke model, it is necessary to also provide a function that computes the generator (transition intensity) matrix

and its derivatives at a given time t, covariate vector z and vector of model parameters x. It should output a list

containing a matrix q and an array qp. The matrix q should be the R × R matrix Q(t; z,θ) whose (r, s) entry is

qrs(t; z,θ) for r 6= s and −
∑
k qrk(t; z,θ) for r = s. The array qp should be the R × R × np array of first

derivatives dQ(t; z,θ)/dθ, where np is the number of parameters in the model for the generator matrix.

Although not required, it is desirable to provide an attribute to the function named npar that stores np. In

addition, parameter names (for use in print) can be supplied in an attribute parnames. The attribute should be a

character string of length np. The created function should be supplied as the argument intens.

Note that for large models or datasets, or if the same model will be fitted many times, it is general advantageous

to hard-code an intens function even if the model is one of the pre-specified types. The speed gain varies, but may

be biggest for models with a large(r) number of covariates that only affect a small number of transitions. Worked

examples of the use of bespoke type models are given in Section 6.

5

3.3 trans argument

The number of states in the model and the set of admissible transitions is specified using the trans argument. trans

should be an R × R matrix. The (r, s) entry should be 0 if the r → s transition is inadmissible. The admissible

transitions should be numbered consecutively from 1. If the same number is given to two or more distinct transitions,

e.g. (r, s) and (r′, s′), then this implies θrs = θr′s′ , i.e. the baseline parameters for each transition are constrained

to be equal.

The diagonal of the matrix will be ignored, but a warning is given if it contains entries other than 0.

For bespoke type models, trans is only used to specify the number of states in the model, i.e. it can be an

R×R matrix of zeroes.

3.4 nonh argument

The nonh argument specifies which transition intensities are non-homogeneous with respect to time. The same

principles as the verb!trans! argument holds. trans should be an R × R matrix. If the (r, s) entry is 0 it implies

either the transition is inadmissible or it is time homogeneous. The non-homogeneous transitions should be numbered

consecutively from 1. If the same number is given to two or more transitions then it is assumed they have the same

time trend parameter(s). For instance for a Weibull type model it would imply that αrs = αr′s′ .

3.5 covm argument

The covm argument is used to specify which transitions are affected by which covariates. The argument can either be

supplied as a named list of R×R matrices or else an R×R×nc array, where nc is the length of the covariates

argument.

If a named list is supplied, the names must be present in the covariates vector. If an array is supplied, the

(r, s, k) entry will relate to the effect of the kth covariate named in the covariates vector on the r → s transition.

The same principle used in trans and nonh is used for covm. A zero entry implies no effect, otherwise effects

should be numbered consecutively from 1. Assigning the same number to any two entries implies a common covariate

effect. NB: The numbering applies across the whole argument.

3.5.1 Time dependent covariates

Time dependent covariates may be included in the model. Time dependent covariates are assumed to be constant

between observed visit times. The same data convention as the msm package is used, namely that the transition

intensities for the period (ti, ti+1), will be governed by the covariates measured at ti. As a consequence the covariates

supplied for the last follow-up time will only be used in the case of exact death times, or else only for covariate

effects on the misclassification probabilities at the last observation time. Note that a particular advantage of nhm is

6

that deterministic time dependent covariates can be incorporated into the model without using a piecewise constant

approximation. For instance, if current age is to be a covariate such that

λrs(t; age(t)) = exp{θrs + βrsage(t)}

then this can be fitted via a “Gompertz" model

λrs(t; age(t)) = exp{θrs + βrs(age0 + t)}

where age0 is the patient’s age at time 0. Note that the centre_time argument can be a vector, so supplying the

vector of−age0 will allow this model to be fitted. More complicated time dependent covariates can be accommodated

using a bespoke type intensity function.

3.6 Example: Gompertz model with covariate effects

We consider a four state progressive model where the generator matrix is of the form

Q(t; z) =



−q12(t; z) q12(t; z) 0 0

0 −q23(t; z) q23(t; z) 0

0 0 −q34(t; z) q34(t; z)

0 0 0 0


To specify that 1 → 2, 2 → 3 and 3 → 4 are the only admissible transitions and that they have distinct baseline

intensity parameters:

trans <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))

We desire a model where all transitions have distinct time effects

nonh <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))

and that each of the covariates affects the 1→ 2 only

covm <- list(

cov1 = rbind(c(0,1,0,0),rep(0,4),rep(0,4),rep(0,4)),

cov2 = rbind(c(0,2,0,0),rep(0,4),rep(0,4),rep(0,4)))

The call to model.nhm is then

gomp_model <- model.nhm(state~time, data=example_data1, subject = id, covariates

=c("cov1","cov2"),type="gompertz",trans=trans,nonh=nonh,covm=covm)

3.7 Arguments for misclassification models

The arguments emat, ecovm, firstobs, initp, initp_value and initcovm are specific to misclassifica-

tion type hidden Markov models and are explained in the following section.

7

3.7.1 Misclassification probabilities

The general model for the misclassification probabilities is of the form

P (Oj = s|Xj = r, z,θ) =
exp(urs)∑
k exp(urk)

where urr ≡ 1 and urs = ηrs + τ
′
rsz. Hence a multinomial logistic regression model is used for each state, with

correct classification (Oj = Xj) taken as the baseline category.

The emat argument follows the same principles as trans in that it should be an R × R matrix numbered

consecutively from 1. Inadmissible misclassification is labelled 0, while assigning the same number to two transitions

implies that ηrs = ηr′s′ . Diagonal elements will be ignored. Similarly, ecovm follows the same principles as covm

in defining the covariate effects τ .

3.7.2 Initial state probabilities

For Markov models without misclassification, the likelihood is computed conditional on the first observed state. In

contrast, for misclassification models there are several different possible ways the process could be started. The

purpose of the firstobs argument is to identify which of these possibilities applies.

The firstobs argument

Specifying firstobs="exact" implies that the state occupied at the first observation time was known without

misclassification for all patients. This is the default if firstobs is not specified.

Specifying firstobs="absent" implies that no state was actually observed at the first observation time for

each patient. Instead all that is assumed is the process was initiated at that time, with the state occupation probabilities

at that time based on the model for initial probabilities. Note that the values of the first observations given in the

state variable in this case are effectively place-holders required only to specify the time at which the patient’s

process was initiated.

Specifying firstobs="misc" implies that the state observed at the first observation time was subject to mis-

classification, with the distribution of true occupied states at that time based on the model for initial probabilities.

Model for initial probabilities

If firstobs is taken to be either 'absent' or 'misc' then a model for the state occupation probabilities at the

first observation time is needed. By default, if no other arguments are specified it is assumed that the subject is in

state 1 with probability 1.

One can either specify a fixed vector of initial probabilities using the initial_value argument or the initial

probabilities can be allowed to follow a multinomial logistic regression model with state 1 taken as the baseline

8

category and the parameters assumed unknown and to be estimated. In the former case initial_value should be a

numerical vector of lengthR of non-negative values which sum to 1, corresponding to P (X(t0) = r), r = 1, . . . , R.

In the latter case the argument initp should be a vector of length R which identifies which states other than 1 have

a non-zero probability of being occupied at the initial time. As above, the states should be numbered consecutively

from 1. If the same number is assigned twice or more it implies the same baseline parameter is used. The first entry

of the vector is ignored, but expected to be 0. In addition initpcovm can be supplied to allow covariate effects on

the initial probabilities. This should either be a named list of vectors of length R or an R× nc matrix.

3.8 Example: Weibull model with misclassification

A second example dataset is analysed, where the observed data includes backwards transitions. We again consider a

four state progressive model, each with distinct time effects

trans <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))

nonh <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))

To account for the backward transitions seen in the data, state misclassification is assumed between adjacent states.

This is represented in the call to model.nhm by setting

emat <- rbind(c(0,1,0,0),c(2,0,3,0),c(0,4,0,0),c(0,0,0,0))

which allows each misclassification probability to have a separate parameter. Note that if any two were assigned the

same number it would be the logit scale parameters that would be shared.

For this example, we consider Weibull hazard functions for the transition intensities, meaning the call to model.nhm

is:

weib_model <- model.nhm(state~time, data=example_data2, subject = id,

type="weibull",trans=trans,nonh=nonh,emat=emat)

In the above analysis, the default assumption for firstobs was used, meaning the first observation was taken

to be observed without misclassification. Alternatively, it could be assumed that the status at time 0 is not known and

instead the process could be in one of several starting states. Here a model is considered where each patient may be

in either states 1, 2 or 3 with some probability at time 0:

initp <- c(0,1,2,0)

weib_model2 <- model.nhm(state~time, data=example_data2, subject = id,

type="weibull",trans=trans,nonh=nonh,emat=emat,firstobs="absent",initp=initp)

3.9 Further arguments

3.9.1 ‘Exact’ death times

When a multi-state model describes life history data and absorbing states correspond to death or different causes

of death, it is common for the time of death to be known up to the exact day. Treating the death time as if it

9

were a discrete event time leads to bias. To ensure the correct likelihood contribution, death = TRUE should be

specified and death.states should be a vector identifying which of the states is subject to exact death times.

Note death.states should correspond to absorbing states within the data.

3.9.2 Censoring

For life history data, the end of follow-up for death may not correspond to the last observation time. For instance, the

last observation of a patient may be at 5 years of follow-up, but the study ends at 7 years of follow-up. While we do

not know the state occupied at 7 years, the absence of a death time can be assumed to be evidence that the patient is

still alive. As such the patient’s state occupied at 7 years is censored within the set of living states.

To accommodate this situation the supplied data should include the times of end of follow up for censored indi-

viduals with a corresponding censoring code or codes. The argument censor should be a vector of numerical cen-

soring codes, while censor.states should be a list of vectors specifying the corresponding sets of possible states

implied by the censoring codes. For instance censor=c(98,99) and censor.states=list(1:2,1:3)

specifies that 98 implies the individual is in either state 1 or 2, while 99 implies the individual is in eiter state 1, 2

or 3. If censor is a single value then censor.states can be specified as a vector. Currently censored states can

only be the last state in a patient’s sequence.

3.10 Output of model.nhm

The model.nhm function outputs an object of class nhm_model. The print method for this object prints some

basic information on the model specified; the type of model fitted, the number of unknown parameters and a table

describing the individual parameters in the model. It is useful to check the output of the model specification to ensure

it is as expected. It can also help when specifying initial parameter values in the nhm function.

The table of parameters includes a ‘type’ column. For non-bespoke generator matrix models this identifies which

parameters correspond to baseline parameters (Trans - θrs), which parameters correspond to those defining non-

homogeneity (Nonhom - βrs, ars or νrs), which to the covariate effects on the intensities (Cov - γrs), which to

parameters for the misclassification model (Emat) and which to the initial state probabilities model (Initp). For

models of bespoke type, all the parameters relating to the generator matrix are taken to be of Bespoke parameter

type. The identification of the Nonhom type parameters is important for the default functioning of the score test

options (see Section 4.4)

For the example in Section 3.6, the output is as follows:

gomp_model

10

nhm model object for a Markov model.

Model for intensities has 8 unknown parameters and is of gompertz type.

Name Type

1 Base: 1->2 Trans

2 Base: 2->3 Trans

3 Base: 3->4 Trans

4 Trend: 1->2 Nonhom

5 Trend: 2->3 Nonhom

6 Trend: 3->4 Nonhom

7 Covariate: cov1 1 -> 2 Cov

8 Covariate: cov2 1 -> 2 Cov

4 Model fitting: nhm

Once a model object has been created using model.nhm it can be passed to the main function nhm, which allows

the likelihood to be computed and maximized.

The arguments of nhm control the way in which the model is maximized and which model outputs are required.

The model_object argument is for the nhm_model object created using model.nhm.

4.1 Specification of initial parameter values

The initial argument should correspond to the vector of initial parameter values. This should be a numeric vector

of length equal to the number of unknown parameters in the model. For models without misclassification initial

can be omitted and gen_inits=TRUE may be specified. In that case the initial parameter values are specified

by calling the function crudeinits.msm from the msm package. Specifically initial parameters for the baseline

transition intensities are found by assuming a homogeneous Markov model and that the observation times correspond

to the exact transition times. Covariate effects and any non-homogeneity parameters are all set to zero. This method

is not available for models with misclassification.

Note that the choice of initial parameter values can be very important to the eventual success of the optimization

routine. Poor initial values may lead either to the optimization routine taking much longer to converge, or could lead

to non-convergence. It can also cause problems for the computation of the transition probabilities (see Section 4.2.3

below).

It is best to build the model incrementally. A good starting point is usually a time homogeneous model. A time

homogeneous version of the model can be fitted using msm and those parameters can be used as starting values.

Unfortunately, due to the differences in syntax and the wider range of options in msm, this process is not currently

automated.

11

4.2 Control options

The nhm function contains a control argument. The function nhm.control should be used to create the list of

control options.

4.2.1 Options for deSolve

The control options tmax, rtol and atol relate to parameters to be passed to the lsoda function within deSolve.

The option tmax determines the maximum point at which the system of differential equations should be solve, while

rtol and atol specify the relative and absolute tolerance levels it should use.

4.2.2 Algorithm options

In general the likelihood is optimized by using Newton-type algorithms in which the parameters are updated in the

form

θ(i+1) = θ(i) − δ(i)H̃(θ(i))−1u(θ(i))

where u(θ) = ∂ logL(θ)
∂θ

, H̃(θ(i)) is some estimate of the Hessian and δ(i) is some scalar, usually in [0, 1], that

determines the step length.

BHHH algorithm

The default optimization method used by nhm is the BHHH algorithm [1], implemented through the maxLik package

[4]. The BHHH algorithm exploits the identity E(UU
′
) = E(I). This is a quasi-Newton algorithm in which the

Hessian is approximated by −J(θ(i)) where

J(θ(i)) =

N∑
i=1

ui(θ
(i))ui(θ

(i))
′

where ui(θ
(i)) = ∂logLi(θ

(i))
∂θ

and Li(θ(i)) is the likelihood contribution for subject i. If taking δ(i) = 1 does not

result in an improvement to the likelihood, the algorithm will repeatedly halve the step length. The degree of detail

of the progress of the BHHH algorithm that is printed can be controlled using print.level which should be an

integer between 0 and 3. Further control options of the algorithm can be passed to maxLik using maxLikcontrol.

Fisher scoring

For models without misclassification, censoring or exact death times, a Fisher scoring algorithm can instead be used

by specifying fishscore=TRUE. This uses minus the expected Fisher information as the estimate of the Hessian.

For models that are well identified and are supplied good starting values, the Fisher scoring algorithm tends to be

quicker. However, by default the algorithm is not very robust and may fail if the log-likelihood surface is quite flat or

if a poor set of initial parameters is supplied. There are some additional options available to improve the robustness;

12

linesearch allows a line search to be performed at each iteration to find the best step length, δ(i). For models that

are close to non-identifiable, the algorithm can be modified so that a diagonal term is added to the expected Fisher

information, i.e. H̃(θ(i)) = −
{
E(I(θ(i))) + λIp

}
where Ip is a p × p identity matrix. This modification can be

specified by setting damped=TRUE and the damping parameter λ can be specified using damppar.

By default, for either the BHHH or Fisher scoring algorithms, a finite differences estimate of the observed Fisher

information, − ∂
2 logL

∂θ∂θ
′ , is computed. This requires an additional 2p evaluations of the likelihood gradient. While the

observed information is generally considered to give more accurate standard error estimates, if obsinfo=FALSE

then nhm will instead only provide either the expected Fisher information (in the case of the Fisher scoring algorithm)

or J(θ̂) (in the case of the BHHH algorithm).

4.2.3 Splits

By default nhm finds the transition probabilities by solving a single initial value problem for each unique covariate

pattern. Specifically, an initial boundary problem of the form

dP(t0, t; z)

dt
= P(t0, t; z)Q(t; z) for P(t0, t0; z) = I (4.1)

is solved, for all times in the set of start and end times for intervals with covariate pattern z and where t0 is the first

start time in the set. By the identity P(t0, t2; z) = P(t0, t1; z)P(t1, t2; z) any individual transition probability can

be obtained from the solutions to (4.1)

P(t1, t2; z) = P(t0, t1; z)−1P(t0, t2; z).

However, this method relies on P(t0, t1; z) being invertible. The transition probability matrix may become singular

if t0 and t1 are far apart and, for instance, the probability of remaining in a state over that time gets very close to

zero. A singular matrix is most likely when poor starting values have been supplied to the optimization, but could

also happen for data sets where the vast majority of individuals progress during the follow-up time.

If the algorithm fails due to a singular matrix, an error message will appear informing between which times

(t0, t1) the singularity arose. Singularities can be avoided by using the splits option within nhm.control.

Specifically, by supplying a vector of split times, nhm will categorize the start times into groups and solve separate

initial value problems for any intervals within start times in the different groups. For instance, if a split is included at

t = 5 then P (6, 11) will be found by solving an initial value problem starting at the first time beyond 5 rather than

from the smallest time with that covariate pattern. Adding splits will tend to increase the computation time, but not

substantially.

4.2.4 Coarsening covariates

The majority of the computation time in evaluating the likelihood arises through the solution of the differential

equations. The necessity to solve a separate system of equations for each covariate pattern means that models with

13

continuous covariates can be substantially more computationally demanding.

It may be desirable for large datasets with continuous covariates to consider an approximation to the likelihood

based upon coarsening the set of unique covariate values. Titman (2011) [12] proposed a simple method based on

using K-means clustering to group similar values of the continuous covariates and assuming approximating transition

probabilities within the same cluster by the transition probability that would arise from the mean covariate values

within that cluster. While coarsening the covariates will tend to introduce some attenuation bias in the covariate

effects, it may be useful either in the model building stage or in cases where the full model is computationally

impractical.

4.2.5 Parallelization

An alternative way to speed up the computation of mdoels for data with a large number of unique covariate patterns is

to exploit parallel processing. The ncores option allows the mclapply function in the parallel package to allow

multiple systems of ODEs to be solved simultaneously.

4.3 Fixed parameters

While model.nhm allows parameters to be fixed to zero (e.g. no transition, no time non-homogeneity, no covariate

effect etc.) or for parameters to be constrained to be equal (e.g. the same time effect for 1 → 2 as 2 → 3), there

may also be situations where we wish to fix parameters to specific values. This can be achieved using the fixedpar

option in nhm. fixedpar should be vector of integers identifying the indices of the parameters to be fixed. In the

optimization these parameters will be fixed at the values supplied in initial. Note that currently if fixedpar is

used then several of the model output functions are unavailable (predict, qmatrix.nhm, ematrix.nhm and

initialprob.nhm).

4.3.1 Example: Gompertz model

A time homogeneous model for the data introduced in Section 3.6 can be fitted using msm.

model_msm <- msm(state~time,gen.inits=TRUE,subject=id,data=example_data1,

qmatrix=trans)

This can be used to gain estimates of the baseline parameters.

model_msm$estimates

qbase qbase qbase

-0.5764525 -0.4078982 -0.6565766

initpar <- c(model_msm$estimates,rep(0,5))

gomp_fit1 <- nhm(gomp_model,initial=initpar)

14

Since no control options are specified, a BHHH optimization algorithm is performed which converges in 7 iterations.

However, a further 16 gradient evaluations are required to compute the observed information, taking the majority of

the computation time.

Alternatively, a Fisher scoring algorithm may be used

initpar <- c(model_msm$estimates,rep(0,5))

gomp_fit1a <- nhm(gomp_model,initial=initpar,control=nhm.control(fishscore=TRUE))

From the same starting values, this converges in just 5 iterations. Again, a further 16 gradient evaluations are required

for the observed information.

4.4 Score test option

De Stavola (1988) [3] proposed local score tests to assess the homogeneity assumption in Markov multi-state models.

The advantage of the score test is that it is not necessary to fit a more complicated model in order to assess whether it

may fit better than the basic model. In the original paper by De Stavola, a linear model of the form

qrs(t; ε) = qrs0 + εt

is assumed, with this formulation giving a closed form for the test statistic. However, through solution of the systems

of differential equations, any non-homogeneous model can be considered. In general, assume the parameter vector

can be partitioned as θ = (ψ,β) where β controls the time non-homogeneity.

The score_test option in nhm enables a score test to be performed of the form

H0 : β = β0 vs. H1 : β 6= β0. (4.2)

Typically β0 = 0, corresponding to a time homogeneous model.

If score_test=TRUE then the nhm function simply computes the gradient and Fisher information at the sup-

plied initial values and stores them in an object of class nhm_score. The print method for this object is a function

which computes and prints the output from a score test.

Suppose ψ̂0 is the maximum likelihood estimate for the restricted model in which β = β0, and denote θ̂0 =

(ψ̂0,β0). The score statistic is then of the form

S = U
′
βI
ββUβ

where Uβ = ∂ logL(θ̂0)
∂β

and Iββ is the square matrix created from the entries of the inverse Fisher information

corresponding to β. Under the null S ∼ χ2
|β|. If fishscore=TRUE was specified in the control options of nhm

then the expected Fisher information will be used in the test, while otherwise the squared derivatives estimate will be

used.

15

By default, the function uses the stored parclass of the parameters and assumes that the score test is with

respect to all parameters that are of Nonhom class. However, the user can specify which parameters are to be tested

by using the which_comp option. This should identify the indices of the parameter vector that are to be tested.

In addition to computing the overall statistic S, the function also calculates individual z-statistics for each indi-

vidual parameter where zi = Uβi/
√
Iβiβi and each zi has an asymptotic N(0, 1) distribution under the null.

Note that for the score test to give sensible results the supplied initial parameter vector needs to represent the

MLE for the restricted model. The function will attempt to check whether this is the case by assessing the size of

U
′
ψI
ψψUψ and produces a warning if it is not close to 0.

The score test option is most useful as an exploratory step to determine which, if any transition intensities exhibit

time non-homogeneity, and in which direction. However, it could also be used in other situations; for instance to

assess whether covariate effects may be beneficial.

4.4.1 Example: Testing for Gompertz time effects

Using the first example data set, we can fit a time homogeneous model. This could be done substantially faster using

msm, but here we will use nhm directly using the previous model settings, except modifying the nonh term

nonh0 <- matrix(0,4,4)

gomp_model0 <- model.nhm(state~time, data=example_data1, subject = id,

covariates=c("cov1","cov2"),type="gompertz",trans=trans,nonh=nonh0,covm=covm)

gomp_model0

nhm model object for a Markov model.

Model for intensities has 5 unknown parameters and is of gompertz type.

Name Type

1 Base: 1->2 Trans

2 Base: 2->3 Trans

3 Base: 3->4 Trans

4 Covariate: cov1 1 -> 2 Cov

5 Covariate: cov2 1 -> 2 Cov

gomp_fit0 <- nhm(gomp_model0,gen_inits=TRUE,control=nhm.control(obsinfo=FALSE))

Here obsinfo=FALSE because we only need the parameter estimates. The parameter estimates from this model

then make up starting values for the model defined in gomp_model1, with the time trend parameters set to zero:

initial_hom <- c(gomp_fit0$par[1:3],rep(0,3),gomp_fit0$par[4:5])

We may then use nhm to perform a score test of whether β12 = β23 = β34 = 0:

gomp_score <- nhm(gomp_model, initial=initial_hom, score_test=TRUE, control=

nhm.control(fishscore=TRUE))

gomp_score

16

Score test for non-homogeneity components

Stat p-val

Trend: 1->2 2.5935 0.0095

Trend: 2->3 1.1613 0.2455

Trend: 3->4 -0.6771 0.4983

Overall 8.2249 0.0416

This indicates that there is a strong effect of time on the 1 → 2 transition, but no evidence of an effect for the other

two transitions.

5 Model outputs

5.1 Print method for nhm class objects

The print method for a fitted model of nhm class produces a table of parameter estimates with corresponding 95%

confidence intervals. Note these are the raw parameter estimates (θrs, βrs,γrs, ars, ηrs, τrs in the notation given in

Section 3).

If the model is not of bespoke type then the parameters will be automatically labelled based on their type and

which transition intensities, misclassification probabilities or initial probabilities they govern. For bespoke type

models, by default the labels will simply be of the form ‘Bespoke Q parameter k’. If desired, more informative names

can be produced by including a parnames attribute to the intens function. This needs to be a character vector of

length equal to the number of parameters governing the model for the intensities.

5.2 Transition probability estimates: predict

The predict method for an nhm class (fitted model) object allows the transition probabilities from a particular start

time, time0, and starting state, state0, and for a particular covariate value, covvalue. If omitted, time0=0,

state0=0 and covvalue will be taken as the covariate means. Note that the function can only compute the

probabilities for one covariate pattern. Hence covvalue must be a vector of length corresponding to the number of

covariates in the model and in the order given in the covariates argument of the nhm.model call.

By default the function will compute the transition probabilities at a vector of times between time0 and the

maximum follow-up time in the data of length 100. However, the times option may be used to supply the set of

times.

By default predict will supply approximate pointwise 95% confidence intervals for each transition probability

by using a logit transformation to provide intervals that lie within [0, 1].

To change the nominal coverage of the limits, coverage can be changed from its default of 0.95. Potentially

more accurate asymptotic confidence intervals can be obtained by setting sim=TRUE, which will mean the simulation

17

delta method [9] will be used to compute the limits, rather than the delta method. Note that this option is substantially

slower than using the delta method because the system of differential equations will be solved B times, where the

default is B=1000. If no confidence intervals are required, ci=FALSE may be specified.

5.3 Transition intensity estimates: qmatrix.nhm

If estimates of the transition intensities are required, rather than the probabilities, then the function qmatrix.nhm

may be used with an object of nhm class. The function has very similar syntax to predict except that time0 refers

simply to the minimum time at which the transition intensities are to be computed.

By default the asymptotic confidence intervals are computed via the delta method using a log transformation to

ensure that the intervals lie on [0,∞). Simulation delta method intervals can be obtained by setting sim=TRUE.

5.4 ematrix.nhm and initialprob.nhm

For misclassification type hidden Markov models, particularly those with covariates, there may be interest in ob-

taining estimates of the matrix of misclassification probabilities for a given covariate pattern. This is the purpose of

the ematrix.msm function. In addition to the name of the nhm object, the covariate pattern covvalue can be

supplied. The function outputs the misclassification probability estimates and their standard errors.

Similarly, if there is uncertainty in the initial state vector (see Section 3.7.2) then initialprob.nhm can be

used to obtain the estimates of the initial state probabilities for a given covvalue, and also gives the corresponding

standard errors.

5.5 Plot method for nhm class objects

Plotting an nhm class object will call either predict.nhm or qmatrix.nhm in order to produce plots of either

the transition probabilities (when what='probabilities' which is the default) or transition intensities (when

what='intensities'). In either case a multi-panel plot is produced with a plot corresponding to either each

state, in the case of probabilities, or each viable transition. The same control parameters used in predict or

qmatrix.nhm can also be specified in plot, such as the evaluation times, the covariate vector and (for transition

probabilities) the initial state. By default pointwise 95% confidence intervals are produced via the delta method, but

simulation delta method intervals may also be produced by specifying sim=TRUE.

5.6 Example: B-spline model with misclassification and covariate effects

To illustrate the different types of model output, we consider fitting a B-spline type model to the second example

dataset. To limit the number of unknown parameters, we only allow non-homogeneity with respect to the 1 → 2

transition intensity.

18

trans <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))

nonh <- rbind(c(0,1,0,0),rep(0,4),rep(0,4),rep(0,4))

As in Section 3.8, it is assumed that state misclassification can only occur between adjacent transient states

emat <- rbind(c(0,1,0,0),c(2,0,3,0),c(0,4,0,0),rep(0,4))

A general model is assumed for the covariate effects, allowing a separate proportional effect on each of the transition

intensities

covm <- list(cov1 = rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4)),

cov2 = rbind(c(0,4,0,0),c(0,0,5,0),c(0,0,0,6),rep(0,4)))

Since the model is to be of bspline type, it is necessary to also specify the location of the knot points. These are

chosen to ensure that a reasonably similar number of 1→ 2 transitions occur between each pair of knots. The upper

limit is taken below the maximum follow-up time.

splinelist <- list(c(0,2,10))

bspline_model <- model.nhm(state~time, data=example_data2, subject = id,type="bspline",

covariates=c("cov1","cov2"),trans=trans,nonh=nonh,emat=emat,covm=covm,splinelist=splinelist)

nhm model object for a misclassification hidden Markov model.

Model has 17 unknown parameters.

Model for intensities has 13 unknown parameters and is of bspline type.

Name Type

1 Base: 1->2 Trans

2 Base: 2->3 Trans

3 Base: 3->4 Trans

4 Spline pars: 1->2...1 Nonhom

5 Spline pars: 1->2...2 Nonhom

6 Spline pars: 1->2...3 Nonhom

7 Spline pars: 1->2...4 Nonhom

8 Covariate: cov1 1 -> 2 Cov

9 Covariate: cov1 2 -> 3 Cov

10 Covariate: cov1 3 -> 4 Cov

11 Covariate: cov2 1 -> 2 Cov

12 Covariate: cov2 2 -> 3 Cov

13 Covariate: cov2 3 -> 4 Cov

14 Emat: 1->2 Emat

15 Emat: 2->1 Emat

16 Emat: 2->3 Emat

17 Emat: 3->2 Emat

To find reasonable starting values, we fit a time homogeneous model without covariates

19

null_mod <- model.nhm(state~time, data=example_data2, subject = id,type="gompertz",

trans=trans,nonh=array(0,c(4,4)),emat=emat)

null_fit <- nhm(null_mod,initial=c(-2,-2.5,-3,-3,-3,-3,-3),

control=nhm.control(obsinfo=FALSE))

initial_sp <- c(null_fit$par[1:3],rep(0,10),null_fit$par[4:7])

bspline_fit <- nhm(bspline_model,initial=initial_sp)

The BHHH algorithm converges in 8 iterations. The bulk of the computation time is used to compute the numerical

Hessian which requires 34 further gradient evaluations (and can be skipped by setting obsinfo=FALSE.

By default plotting the fitted object will produce a four panel plot of the state occupation probabilities for the

mean covariate values:

plot(bspline_fit)

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability in state 1

Time

P
ro

ba
bi

lit
y

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability in state 2

Time

P
ro

ba
bi

lit
y

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability in state 3

Time

P
ro

ba
bi

lit
y

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability in state 4

Time

P
ro

ba
bi

lit
y

However we can, for instance, produce a plot of the estimated transition intensities, for a subject with covariate

values (1, 0) by using:

20

plot(bspline_fit, what="intensities", covvalue=c(1,0))

0 2 4 6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

2.
0

Intensity 1−>2

Time

In
te

ns
ity

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

Intensity 2−>3

Time

In
te

ns
ity

0 2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Intensity 3−>4

Time

In
te

ns
ity

There is apparently no obvious trend in the transition intensities, beyond some indication of an increased rate

between 2 and 6 years.

Similarly, the estimated matrix of misclassification probabilities can be obtained using

ematrix.nhm(bspline_fit)

21

$emat

[,1] [,2] [,3] [,4]

[1,] 0.91896279 0.08103721 0.00000000 0

[2,] 0.07046095 0.89906616 0.03047288 0

[3,] 0.00000000 0.09200885 0.90799115 0

[4,] 0.00000000 0.00000000 0.00000000 1

$SEemat

[,1] [,2] [,3] [,4]

[1,] 0.02495268 0.02495268 0.00000000 0

[2,] 0.02408139 0.02511198 0.01740597 0

[3,] 0.00000000 0.01904015 0.01904015 0

[4,] 0.00000000 0.00000000 0.00000000 0

6 Specifying bespoke models

The bespoke model type allows for user supplied functions for the generator matrix of intensities and its derivatives

to be used with the package. There are two main motivations for supplying a bespoke function. Firstly, it allows

models not otherwise accommodated within the package to be fitted. These could include intensities from other

parametric families than Gompertz or Weibull, or models with interactions between covariates and time.

The second motivation is to allow the computation time to be reduced for models that are accommodated within

the existing functionality. The automatically created functions are slower than a specifically written function, partic-

ular for models which are sparse in the number of possible time or covariate effects.

6.1 Example: Gompertz model

Suppose firstly we wish to fit the same model as in Section 3.6. The function needs to take t, z and x as arguments,

corresponding to the evaluation time, covariate vector and parameter vector, and should return a list elements q - the

intensities matrix and qp - the first derivatives of the intensities matrix.

22

fourstate_expgrowth<-function(t,z,x) {

q12<-exp(x[1])

q23<-exp(x[2])

q34<-exp(x[3])

i12<-q12*exp(x[4]*t + z[1]*x[7] + z[2]*x[8])

i23<-q23*exp(x[5]*t)

i34<-q34*exp(x[6]*t)

q<-rbind(c(0,i12,0,0),c(0,0,i23,0),c(0,0,0,i34),c(0,0,0,0))

diag(q) <- c(-i12,-i23,-i34,0)

der<-array(0,c(4,4,8))

der[1,1,1]<--i12

der[1,2,1]<-i12

der[2,2,2]<--i23

der[2,3,2]<-i23

der[3,3,3]<--i34

der[3,4,3]<-i34

der[,,4:6]<-t*der[,,1:3]

der[1,1,7]<--i12*z[1]

der[1,2,7]<-i12*z[1]

der[1,1,8]<--i12*z[2]

der[1,2,8]<-i12*z[2]

Q<-list(q=q,qp=der)

return(Q)

}

attr(fourstate_expgrowth,"npar")<-8

attr(fourstate_expgrowth,"parnames")<-c("1->2 base:","2->3 base:","3->4 base:","1->2 NH",

"2->3 NH","3->4 NH","Cov1","Cov2")

attr(fourstate_expgrowth,"parclass")<-c("Trans","Trans","Trans","Nonhom",

"Nonhom","Nonhom","Cov","Cov")

The attributes are not essential, but will improve the informativeness of the output.

gomp_model_bespoke <- model.nhm(state~time, data=example_data1, subject = id, covariates=

c("cov1","cov2"), type="bespoke",trans=trans,intens=fourstate_expgrowth)

initpar <- c(model_msm$estimates,rep(0,5))

gomp_fit1b <- nhm(gomp_model_bespoke,initial=initpar)

Exactly the same model as in gomp_fit1 is fitted, but there is around a 64% reduction in computation time in this

case.

6.2 Example: Gompertz model with interaction covariate effects

Now we consider an extended version of the model, where the degree of time non-homogeneity depends on covariate

1. An extra parameter is added that introduces a common interaction between time and covariate 1 for the 1 → 2,

2→ 3 and 3→ 4 transitions.

23

fourstate_expgrowth_int<-function(t,z,x) {

q12<-exp(x[1])

q23<-exp(x[2])

q34<-exp(x[3])

i12<-q12*exp((x[4]+z[1]*x[9])*t + z[1]*x[7] + z[2]*x[8])

i23<-q23*exp((x[5]+z[1]*x[9])*t)

i34<-q34*exp((x[6]+z[1]*x[9])*t)

q<-rbind(c(0,i12,0,0),c(0,0,i23,0),c(0,0,0,i34),c(0,0,0,0))

diag(q) <- c(-i12,-i23,-i34,0)

der<-array(0,c(4,4,9))

der[1,1,1]<--i12

der[1,2,1]<-i12

der[2,2,2]<--i23

der[2,3,2]<-i23

der[3,3,3]<--i34

der[3,4,3]<-i34

der[,,4:6]<-t*der[,,1:3]

der[1,1,7]<--i12*z[1]

der[1,2,7]<-i12*z[1]

der[1,1,8]<--i12*z[2]

der[1,2,8]<-i12*z[2]

der[1,1,9]<--i12*z[1]*t

der[1,2,9]<-i12*z[1]*t

der[2,2,9]<--i23*z[1]*t

der[2,3,9]<-i23*z[1]*t

der[3,3,9]<--i34*z[1]*t

der[3,4,9]<-i34*z[1]*t

Q<-list(q=q,qp=der)

return(Q)

}

attr(fourstate_expgrowth_int,"npar")<-9

attr(fourstate_expgrowth_int,"parnames")<-c("1->2 base:","2->3 base:","3->4 base:","1->2 NH",

"2->3 NH","3->4 NH","Cov1","Cov2","TimeEfCov1")

attr(fourstate_expgrowth_int,"parclass")<-c("Trans","Trans","Trans","Nonhom",

"Nonhom","Nonhom","Cov","Cov","Cov")

Since this model is an extension of the previous one, it makes sense to use the estimates from the simpler model to

obtain starting parameter estimates.

gomp_model_bespoke2 <- model.nhm(state~time, data=example_data1, subject = id, covariates=

c("cov1","cov2"), type="bespoke",trans=trans,intens=fourstate_expgrowth_int)

initpar2 <- c(gomp_fit1b$par,0)

gomp_fit2 <- nhm(gomp_model_bespoke2,initial=initpar2)

gomp_fit2

24

Est Low 95% Up 95%

1->2 base: -0.9004 -1.0412 -0.7596

2->3 base: -0.3902 -0.5361 -0.2443

3->4 base: -0.6325 -0.8086 -0.4565

1->2 NH 0.0769 0.0294 0.1244

2->3 NH -0.0086 -0.0473 0.0300

3->4 NH -0.0096 -0.0459 0.0267

Cov1 0.4760 0.3293 0.6228

Cov2 -0.3179 -0.3899 -0.2458

TimeEfCov1 0.0077 -0.0149 0.0304

Deviance: 5789.49

In this case, the additional covariate does not improve the fit, which may be verified using anova

anova(gomp_fit1b,gomp_fit2)

$LRS

[1] 0.4440297

$df

[1] 1

$p

[1] 0.5051839

References

[1] Berndt E, Hall B, Hall R, Hausman J. (1974). Estimation and Inference in Nonlinear Structural Models.

Annals of Economic and Social Measurement. 3. 653–665.

[2] Cox DR, Miller HD (1965).The Theory of Stochastic Processes. Chapman and Hall, London.

[3] de Stavola BL. (1988). Testing Departures from Time Homogeneity in Multistate Markov Processes. Journal

of the Royal Statistical Society: Series C (Applied Statistics) 37. 242–250.

[4] Henningsen A, Toomet O. (2011). maxLik: A package for maximum likelihood estimation in R. Computa-

tional Statistics, 26. 443–458.

[5] Jackson C.H. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical

Software, 38(8), 1–29. http://www.jstatsoft.org/v38/i08/.

[6] Jackson C.H, Sharples L.D., Thompson S.G, Duffy S.W, Couto E. (2003) Multistate Markov models for

disease progression with classification error. Journal of the Royal Statistical Society Series D 52:193-209

[7] Kalbfleisch J.D, Lawless J.F. (1985) The analysis of panel data under a Markov assumption. Journal of the

American Statistical Association 80:863-871.

25

[8] Lystig TC., Hughes JP. (2002) Exact computation of the observed information matrix for hidden Markov

models. Journal of Computational and Graphical Statistics, 11, 678–689.

[9] Mandel M. (2013) Simulation-based confidence intervals for functions with complicated derivatives. The

American Statistician, 67. 76–81.

[10] Petzold, Linda R. (1983) Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary

Differential Equations. Siam Journal of Scientific and Statistical Computing, 4. 136–148.

[11] Soetaert K, Petzoldt T, Woodrow Setzer R. (2010) Solving differential equations in R: Package deSolve.

Journal of Statistical Software, 33. 1–25

[12] Titman A.C. (2011). Flexible Nonhomogeneous Markov Models for Panel Observed Data. Biometrics, 67.

780–787.

26

