Version 1.1.3 (2019-09-17)
- Prediction & Confidence interval: the pimaandcimafunctions
- Back-transformartion for logarithmic scale outcomes (print &
plot function; thanks to Dr. Morio Aihara).
 
- CITATION was updated.
- Vignette was updated.
Version 1.1.2 (2019-03-11)
- Prediction interval: the pimafunction
- Parallel computing for the parametric bootstrap method (see a
Vignette file).
- Forest plot (see a Vignette file).
- Kenward-Roger’s approach.
 
- Confidence interval: the cimafunction
- A Wald-type t-distribution confidence interval. Variance estimator
of the average effect: an approximate estimator. Heterogeneity variance:
Dersimonian-Laird estimator.
- A Wald-type t-distribution confidence interval. Variance estimator
of the average effect: an approximate, Hartung-Knapp, Sidik-Jonkman,
Kenward-Roger estimators. Heterogeneity variance: REML estimator.
- Profile likelihood confidence interval.
- Profile likelihood confidence interval with a Bartlett type
correction.
- Forest plot.
 
- Heterogeneity variance estimators: the tau2hfunction
- DerSimonian-Laird estimator.
- Variance component type estimator.
- Paule–Mandel estimator.
- Hartung-Makambi estimator.
- Hunter–Schmidt estimator.
- Maximum likelihood estimator.
- Restricted maximum likelihood estimator.
- Approximate restricted maximum likelihood estimator.
- Sidik–Jonkman estimator.
- Sidik–Jonkman improved estimator.
- Empirical Bayes estimator.
- Bayes modal estimator.
- ML and REML confidence intervals.
 
- Converting binary data: the convert_binfunction
- Converting binary data to logarithmic odds ratio (see a Vignette
file).
- Converting binary data to logarithmic relative risk.
- Converting binary data to risk difference.
 
- The distribution of a positive linear combination of chiqaure random
variables: the pwchisqfunction
Version 1.1.1 (2018-09-15)
Version 1.1.0 (2018-09-14)
- Refined the package structure.
- New function pimais available (see a Vignette
file).
Version 1.0.1 (2018-05-11)
- Updated citation informations.
Version 1.0.0 (2018-04-05)