## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::opts_chunk$set(fig.width = 8, fig.height = 6) ## ----setup-------------------------------------------------------------------- library(pooledpeaks) ## ----message=FALSE------------------------------------------------------------ library(Fragman) library(ape) library(magrittr) library(tibble) if (!rlang::is_installed("plyr")) { stop("This vignette requires the 'plyr' package. Please install it with install.packages('plyr').") } library(plyr) library(dplyr) ## ----------------------------------------------------------------------------- file_path <- system.file("extdata", package = "pooledpeaks") eggcount <- data.frame( ID = c("X23.2", "X30.3", "X33.1", "X1086.3", "X1087.3", "X1205.3", "X121.3", "X1222.3", "X1354.3", "X1453.3", "X1531.3", "X1540.1", "Multiplex_set_I_Shaem.1", "Multiplex_set_I_Shaem.3", "Multiplex_set_I_Shaem.4"), n = c( 20, 46, 80, 156, 154, 122, 19, 45, 117, 75, 22, 175, 100, 97, 183) ) Shae10 <- c(161,164,167,170,173,176,179,182,185,188,191,194,197,200,203,206,209, 212,215,218) mic_SMMS2 <- c(211, 215, 219, 223, 227, 231, 235, 239) GS600LIZ <- c(20, 40, 60, 80, 100, 114, 120, 140, 160, 180, 200, 214, 220, 240, 250, 260, 280, 300, 314, 320, 340, 360, 380, 400, 414, 420, 440, 460, 480, 500, 514, 520, 540, 560, 580, 600) ## ----------------------------------------------------------------------------- fsa_data <- fsa_batch_imp(file_path, channels = 5, rawPlot = TRUE, fourier = TRUE, saturated = TRUE, lets.pullup = FALSE) fsa_data <- associate_dyes(fsa_data, file_path) ## ----message=FALSE------------------------------------------------------------ ladder.info.attach(stored = fsa_data,ladder = GS600LIZ, ladd.init.thresh = 200, prog = FALSE, draw = FALSE) corro <- unlist(sapply(list.data.covarrubias, function(x){x$corr})) bad <- which(corro < .999) ## ----message=FALSE------------------------------------------------------------ scores_SMMS2 <- score_markers_rev3(my.inds = fsa_data, channel = 1, channel.ladder = 5, panel = "mic_SMMS2", ladder = GS600LIZ, init.thresh = 100, ploidy = length(mic_SMMS2), shift = 1, windowL = 1, windowR= 1, left.cond = c(0, 2.5), right.cond = 0, pref = 1, plotting = FALSE ) scores_Shae10 <- score_markers_rev3(my.inds = fsa_data, channel = 1, channel.ladder = 5, panel = "Shae10", ladder = GS600LIZ, init.thresh = 100, ploidy = length(Shae10), shift = 1, windowL = 1, windowR= 1, left.cond = c(0, 2.5), right.cond = 0, pref = 1, plotting = FALSE ) ## ----------------------------------------------------------------------------- scores_SMMS2_lf<-clean_scores(scores_SMMS2, pattern1 = "_I_[A|B|C].*",replacement1 = "", pattern2 = "_[1|2|3]_Sample.*", replacement2 = "") scores_Shae10_lf<-clean_scores(scores_Shae10, pattern1 = "_I_[A|B|C].*",replacement1 = "", pattern2 = "_[1|2|3]_Sample.*", replacement2 = "") ## ----------------------------------------------------------------------------- scores_SMMS2_tdf <- lf_to_tdf(scores_SMMS2_lf) scores_Shae10_tdf <- lf_to_tdf(scores_Shae10_lf) ## ----eval=FALSE--------------------------------------------------------------- # write.table(scores_SMMS2_lf, file = "scores_SMMS2_lfex.txt", col.names = NA, # quote = FALSE, row.names = TRUE, sep = "\t") # write.table(scores_SMMS2_tdf, file = "scores_SMMS2_tdfex.txt", col.names = NA, # quote = FALSE, row.names = TRUE, sep = "\t") # # write.table(scores_Shae10_lf, file = "scores_Shae10_lfex.txt", col.names = NA, # quote = FALSE, row.names = TRUE, sep = "\t") # write.table(scores_Shae10_tdf, file = "scores_Shae10_tdfex.txt", col.names = NA, # quote = FALSE, row.names = TRUE, sep = "\t") # ## ----------------------------------------------------------------------------- SMMS2<- read.delim("./scores_SMMS2_tdfex.txt")%>% column_to_rownames(var = "X") ## ----------------------------------------------------------------------------- head(SMMS2[, 1:9]) ## ----------------------------------------------------------------------------- SMMS2_IDM <- data_manipulation(SMMS2, threshold = 200) head(SMMS2_IDM[, 1:9]) ## ----------------------------------------------------------------------------- SMMS2_repcheck <- Rep_check(SMMS2_IDM) head(SMMS2_repcheck) ## ----------------------------------------------------------------------------- SMMS2_PCM<-PCDM(SMMS2_repcheck,eggcount,'SMMS2') head(SMMS2_PCM[,1:6]) ## ----eval=FALSE--------------------------------------------------------------- # # Optional binding of markers SMMS2 and markers SMMS13 and SMMS16 which were # # not shown in the workflow # combined<-rbind.fill(SMMS2_PCM, SMMS13_PCM, SMMS16_PCM) # # write.table(combined, file = "combined.txt", col.names = NA, # quote = FALSE, row.names = TRUE, sep = "\t") ## ----------------------------------------------------------------------------- gends <- LoadData(file.path(file_path, "combined3.txt")) head(gends[1:8]) ## ----------------------------------------------------------------------------- N <- TypedLoci(gends) head(N[,1:5]) ## ----------------------------------------------------------------------------- J <- GeneIdentityMatrix(gends,N) head(J[,1:5]) ## ----------------------------------------------------------------------------- D <- GeneticDistanceMatrix(J) head(D[,1:5]) ## ----------------------------------------------------------------------------- print(head(GST(J)[,1:5])) print(head(JostD(J)[,1:5])) ## ----fig.width=6, fig.height=4------------------------------------------------ M <- MDSplot(D,pcs=c(1,2)) ## ----fig.width=6, fig.height=4------------------------------------------------ Tr <- nj(D) Tr <- ladderize(Tr) plot(Tr,cex=0.5,no.margin = TRUE,type='phylogram')