
Package ‘qgraph’
November 3, 2023

Type Package

Title Graph Plotting Methods, Psychometric Data Visualization and
Graphical Model Estimation

Version 1.9.8

Maintainer Sacha Epskamp <mail@sachaepskamp.com>

Depends R (>= 3.0.0)

Imports Rcpp (>= 1.0.0), methods, grDevices, psych, lavaan, plyr,
Hmisc, igraph, jpeg, png, colorspace, Matrix, corpcor,
reshape2, ggplot2, glasso, fdrtool, gtools, parallel, pbapply,
abind

ByteCompile yes

Description Fork of qgraph - Weighted network visualization and analysis, as well as Gaussian graph-
ical model computation. See Epskamp et al. (2012) <doi:10.18637/jss.v048.i04>.

BugReports https://github.com/SachaEpskamp/qgraph

License GPL-2

LazyLoad yes

LinkingTo Rcpp

Suggests BDgraph, huge

NeedsCompilation yes

Author Sacha Epskamp [aut, cre],
Giulio Costantini [aut],
Jonas Haslbeck [aut],
Adela Isvoranu [aut],
Angelique O. J. Cramer [ctb],
Lourens J. Waldorp [ctb],
Verena D. Schmittmann [ctb],
Denny Borsboom [ctb]

Repository CRAN

Date/Publication 2023-11-03 11:00:02 UTC

1

https://doi.org/10.18637/jss.v048.i04
https://github.com/SachaEpskamp/qgraph

2 as.igraph.qgraph

R topics documented:
as.igraph.qgraph . 2
averageLayout . 3
big5 . 4
big5groups . 4
centrality . 5
centrality and clustering plots . 7
centrality_auto . 8
clustcoef_auto . 10
cor_auto . 12
EBICglasso . 14
FDRnetwork . 16
flow . 18
getWmat . 19
ggmFit . 20
ggmModSelect . 21
makeBW . 23
mat2vec . 24
mutualInformation . 25
pathways . 25
plot.qgraph . 26
print.qgraph . 27
qgraph . 28
qgraph.animate . 45
qgraph.layout.fruchtermanreingold . 48
qgraph.loadings . 51
qgraphMixed . 52
smallworldIndex . 53
smallworldness . 54
summary.qgraph . 56
VARglm . 56
wi2net . 57

Index 58

as.igraph.qgraph Converts qgraph object to igraph object.

Description

This function converts the output of qgraph to an ’igraph’ object that can be used in the igraph
package (Csardi & Nepusz, 2006)

Usage

S3 method for class 'qgraph'
as.igraph(x, ..., attributes = TRUE)

averageLayout 3

Arguments

x A "qgraph" object

... Not used.

attributes Logical, should graphical attributes also be transferred?

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Csardi G, Nepusz T (2006). The igraph software package for complex network research, InterJour-
nal, Complex Systems 1695. http://igraph.sf.net

averageLayout Computes an average layout over several graphs

Description

This function can be used to compute a joint layout over several graphs.

Usage

averageLayout(..., layout = "spring", repulsion = 1, layout.par)

Arguments

... Multiple graph objects such as qgraph objects or weights matrices.

layout Same as in qgraph

repulsion The repulsion parameter as used in qgraph.

layout.par Same as in qgraph

Value

A layout matrix

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

4 big5groups

big5 Big 5 dataset

Description

This is a dataset of the Big 5 personality traits that will be used in talks and the paper. It is a mea-
surement of the Dutch translation of the NEO-PI-R on 500 first year psychology students (Dolan,
Oort, Stoel, Wicherts, 2009).

Usage

data(big5)

Format

The format is: num [1:500, 1:240] 2 3 4 4 5 2 2 1 4 2 ... - attr(*, "dimnames")=List of 2 ..$: NULL
..$: chr [1:240] "N1" "E2" "O3" "A4" ...

References

Hoekstra, H. A., Ormel, J., & De Fruyt, F. (2003). NEO-PI-R/NEO-FFI: Big 5 persoonlijkhei-
dsvragenlijst. Handleiding [Manual of the Dutch version of the NEO-PI-R/NEO-FFI]. Lisse, The
Netherlands: Swets and Zeitlinger.

Dolan, C. V., Oort, F. J., Stoel, R. D., & Wicherts, J. M. (2009). Testing measurement invariance in
the target rotates multigroup exploratory factor model. Structural Equation Modeling, 16, 295–314.

big5groups Big 5 groups list

Description

This is the groups list of the big 5 data. It is a measurement of the Dutch translation of the NEO-PI-R
on 500 first year psychology students (Dolan, Oort, Stoel, Wicherts, 2009).

Usage

data(big5groups)

Format

The format is: List of 5 $ Neuroticism : num [1:48] 1 6 11 16 21 26 31 36 41 46 ... $ Extraversion
: num [1:48] 2 7 12 17 22 27 32 37 42 47 ... $ Openness : num [1:48] 3 8 13 18 23 28 33 38 43 48
... $ Agreeableness : num [1:48] 4 9 14 19 24 29 34 39 44 49 ... $ Conscientiousness: num [1:48] 5
10 15 20 25 30 35 40 45 50 ...

centrality 5

References

Hoekstra, H. A., Ormel, J., & De Fruyt, F. (2003). NEO-PI-R/NEO-FFI: Big 5 persoonlijkhei-
dsvragenlijst. Handleiding [Manual of the Dutch version of the NEO-PI-R/NEO-FFI]. Lisse, The
Netherlands: Swets and Zeitlinger.

Dolan, C. V., Oort, F. J., Stoel, R. D., & Wicherts, J. M. (2009). Testing measurement invariance in
the target rotates multigroup exploratory factor model. Structural Equation Modeling, 16, 295–314.

centrality Centrality statistics of graphs

Description

This function can be used on the output of qgraph to compute the node centrality statistics for
weighted graphs proposed by Opsahl, Agneessens and Skvoretz (2010).

Usage

centrality(graph, alpha = 1, posfun = abs, pkg, all.shortest.paths = FALSE,
weighted = TRUE, signed = TRUE, R2 = FALSE)

Arguments

graph A "qgraph" object obtained from qgraph

alpha The tuning parameter. Defaults to 1.

posfun A function that converts positive and negative values to only positive. Defaults
to the absolute value.

pkg Package to use. Either "qgraph" or "igraph". Defaults to "qgraph" for di-
rected networks and "igraph" for undirected networks.

all.shortest.paths

Logical if all shortest paths should be returned. Defaults to FALSE. Setting this
to true can greatly increase computing time if pkg = "igraph".

weighted Logical, set to FALSE to set all edge weights to 1 or -1

signed Logical, set to FALSE to make all edge weights absolute

R2 Logical, should R-squared (predictability) be computed for GGM structures?

Details

This function computes and returns the in and out degrees, closeness and betweenness as well as
the shortest path lengths and shortest paths between all pairs of nodes in the graph. For more
information on these statistics, see Opsahl, Agneessens and Skvoretz (2010).

Self-loops are ignored in computing centrality indices. These statistics are only defined for positive
edge weights, and thus negative edge weights need to be transformed into positive edge weights.
By default, this is done by taking the absolute value.

6 centrality

The algorithm used for computing the shortest paths is the well known "Dijkstra’s algorithm" (Di-
jkstra, 1959). The algorithm has been implemented in R, which can make this function take several
minutes to run for large graphs (over 100 nodes). A future version of qgraph will include a compiled
version to greatly speed up this function.

Value

A list containing:

OutDegree A vector containing the outward degree of each node.
InDegree A vector containing the inward degree of each node.
Closeness A vector containing the closeness of each node.
Betweenness A vector containing the betweenness of each node
InExpectedInfluence

Expected incoming influence - sum of incomming edge weights connected to a
node (not made absolute)

OutExpectedInfluence

Expected outgoing influence - sum of outgoing edge weights connected to a
node (not made absolute)

ShortestPathLengths

A matrix containing the shortest path lengths of each pairs of nodes. These path
lenghts are based on the inverse of the absolute edge weights raised to the power
alpha.

ShortestPaths A matrix of lists containing all shortest path lengths between all pairs of nodes.
Use double square brackets to index. E.g., if the list is called ’res’, res$ShortestPaths[[i,j]]
gives a list containing all shortest paths between node i and j.

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

References

Opsahl, T., Agneessens, F., Skvoretz, J. (2010). Node centrality in weighted networks: generalizing
degree and shortest paths. Soc Netw. 32:245–251.

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik
1, 269–271.

See Also

qgraph

Examples

set.seed(1)
adj <- matrix(sample(0:1,10^2,TRUE,prob=c(0.8,0.2)),nrow=10,ncol=10)
Q <- qgraph(adj)

centrality(Q)

centrality and clustering plots 7

centrality and clustering plots

Centrality and Clustering plots and tables

Description

These functions can be used to facilitate interpreting centrality and clustering coefficients. The plot
functions use ggplot2 (Wickham, 2009). The table functions create a long format table which can
easilly be plotted in ggplot2.

Usage

centralityPlot(..., labels, scale = c("raw0", "raw", "z-scores", "relative"),
include =c("Degree","Strength","OutDegree","InDegree","OutStrength",

"InStrength"), theme_bw = TRUE, print = TRUE, verbose = TRUE,
standardized, relative, weighted = TRUE,signed = TRUE,
orderBy = "default", decreasing = FALSE)

clusteringPlot(..., scale = c("raw0", "raw", "z-scores", "relative"), labels,
include , signed = FALSE, theme_bw = TRUE, print = TRUE,
verbose = TRUE, standardized, relative,orderBy = "default",
decreasing = FALSE)

centralityTable(..., labels, standardized = TRUE, relative = FALSE, weighted =
TRUE, signed = TRUE)

clusteringTable(..., labels, standardized = TRUE, relative = FALSE,
signed = FALSE)

Arguments

... Objects usuable in the getWmat generic, such as qgraph objects and weights
matrices. Can also be lists containing these objects. Graphs in a list will be
plotted in the same panel as different lines and graphs in seperate arguments
will be plotted in seperate panels.

scale Scale of the x-axis. "z-scores" to plot standardized coefficients, "raw" to plot
raw coefficients, "raw0" to plot raw coefficients while including 0 on the x-axis
and "relative" to show values on a relative scale from 0 (lowest) to 1 (highest).

labels A vector overwriting the labels used. Can be missing.

include A vector of measures to include. if missing all measures available will be in-
cluded. Not included by default are "Closeness", "Betweenness", "ExpectedInfluence",
"OutExpectedInfluence", and "InExpectedInfluence". Can also be "all"
or "All" to include all available centrality measures.

theme_bw Adds the ggplot2 black and white theme to the plot

print If TRUE, the plot is sent to the print command and returned invisible, if FALSE
the plot is returned normally. Needed to include plots in e.g., pdf files.

verbose Should messages be printed to the console?

8 centrality_auto

standardized Logical, should all measures be standardized? Argument is deprecated and will
be removed.

relative Logical, should all measures be scaled relative to the largest value? Argument
is deprecated and will be removed.

weighted Logical, set to FALSE to set all edge weights to 1 or -1

signed Logical, set to FALSE to make all edge weights absolute

orderBy String indicating which measure to order by. Can be default (alphabetical), or
one of the measures plotted (e.g., "Strength")

decreasing Logical indicating if the nodes should be ordered increasing or decreasing

Author(s)

Sacha Epskamp <mail@sachaepskamp.com> and Jolanda Kossakowski

References

H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.

centrality_auto Automatic centrality statistics of graphs

Description

This function can be used on several kinds of graphs to compute several node centrality statistics
and the edge-betweenness centrality. The input graph can be an adjacency matrix, a weight matrix,
an edgelist (weighted or unweighted), a qgraph object or an igraph object.

Usage

centrality_auto(x, weighted = TRUE, signed = TRUE)

Arguments

x A graph. Can be a qgraph object, an igraph object, an adjacency matrix, a
weight matrix and an edgelist, or a weighted edgelist.

weighted Logical, set to FALSE to set all edge weights to 1 or -1

signed Logical, set to FALSE to make all edge weights absolute

centrality_auto 9

Details

The function recognizes whether the network is unweighted vs. weighted, undirected vs. directed,
and connected vs. disconnected and computes a set of centrality indices that is best suited for that
particular kind of network. Edge signs are always disregarded, while edge weights and directions, if
present, are considered in the computation of the indices. If the network is disconnected, closeness
centrality is computed only considering the largest component (notice that this is different from
what function centrality does).

If x is unweighted and directed, then the indegree, the outdegree, the node betweenness central-
ity, the closenes centrality, and the edge betweenness centrality are computed. If x is unweighted
and undirected, then the degree, the node betweenness centrality, the closenes centrality, and the
edge betweenness centralities are computed. If x is weighted and directed, then the instrength and
the outstrength (same as indegree and outdegree, but considering weights), the node betweenness
centrality, the closeness centrality, and edge betweenness centralities are computed If x is weighted
and undirected, then the strength, the node betweenness centrality, the closenes centrality, and edge
betweenness centralities are computed. Additionally, the shortest path length between each pair of
nodes is also computed for all the kinds of networks.

Value

A list containing:

node.centrality

A dataframe that includes the node centrality statistics. A subset of the fol-
lowing centrality indices is included, depending on the input network: Degree,
InDegree, OutDegree, Strength, InStrength, OutStrength, Betweenness,
and Closeness.

ShortestPathLengths

A matrix containing the shortest path lengths of each pairs of nodes. These path
lenghts are based on the inverse of the absolute edge weights.

edge.betweenness.centrality

The edge betweenness centrality statistic (Newman & Girvan, 2004). Edges are
ordered by their decreasing centrality.

Author(s)

Giulio Costantini (giulio.costantini@unimib.it), Sacha Epskamp (mail@sachaepskamp.com)

References

Newman, M. E. J., Girvan, M. (2004). Finding and evaluating community structure in networks.
Phisical Review E 69(026113).

Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L., Cramer, A. O.
J., State of the aRt personality research: A tutorial on network analysis of personality data in R.
Manuscript submitted for publication.

See Also

qgraph, centrality

10 clustcoef_auto

Examples

set.seed(1)
adj <- matrix(sample(0:1,10^2,TRUE,prob=c(0.8,0.2)),nrow=10,ncol=10)
Q <- qgraph(adj)
centrality_auto(Q)
notice that a value NA is returned for the closeness centrality of nodes 3 and 9, which are not
strongly connected to the largest component of the network (3 cannot reach other nodes, 9 cannot
be reached).

clustcoef_auto Local clustering coefficients.

Description

Compute local clustering coefficients, both signed and unsigned and both for weighted and for
unweighted networks.

Usage

clustcoef_auto(x, thresholdWS = 0, thresholdON = 0)
clustWS(x, thresholdWS=0)
clustZhang(x)
clustOnnela(x, thresholdON=0)

Arguments

x An undirected graph. Can be a qgraph object, an igraph object, an adjacency
matrix, a weight matrix and an edgelist, or a weighted edgelist.

thresholdWS The threshold used to binarize a weighted network x to compute the binary clus-
tering coefficients clustWS and signed_clustWS. Edges with weights lower
than thresholdWS in absolute value are zeroed. For unweighted networks,
thresholdWS = 0 is the suggested value.

thresholdON In the computation of Onnela’s clustering coefficient clustOnnela, edge of
weights lower than thresholdON in absolute value are excluded. The value
thresholdON = 0 (i.e., no edge is excluded) is generally suggested also for
weighted networks.

Details

clustWS computes the clustering coefficient for unweighted networks introduced by Watts & Stro-
gatz (1998) and the corresponding signed version (Costantini & Perugini, in press). ClustZhang
computes the clustering coefficient for weighted networks introduced by Zhang & Horvath (2005)
and the corresponding signed version (Costantini & Perugini, in press). clustOnnela computes the
clustering coefficient for weighted networks introduced by Onnela et al. (2005) and the correspond-
ing signed version (Costantini & Perugini, in press). clustering_auto automatically recognizes
the kind of the input network x (weighted vs. unweighted, signed vs. unsigned) and computes a
subset of indices according to the kind of the network: signed indices are not computed for unsigned

clustcoef_auto 11

networks and weighted indices are not computed for unweighted networks. However the unsigned
indices are computed for signed networks, by considering the absolute value of the weights, and
the unweighted indices are computed for weighted networks, after a binarization according to the
parameter thresholdWS. clustering_auto computes also the weighted clustering coefficient by
Barrat et al. (2004), relying on function transitivity from package igraph. For the computation
of the local clustering coefficient, a node must have at least two neighbors: for nodes with less than
two neighbors NaN is returned.

Value

A dataframe that includes one or more of the following indices.

clustWS The Watts & Strogatz’s (1998) unweighted clustering coefficient

signed_clustWS The signed version of the Watts & Strogatz’s clustering coefficient

clustZhang The Zhang & Horvath’s (2005) weighted clustering coefficient
signed_clustZhang

The signed version of the Zhang & Horvath’s (2005) clustering coefficient

clustOnnela The Onnela et al.’s (2005) clustering coefficient
signed_clustOnnela

The signed version of the Onnela et al.’s (2005) clustering coefficient

clustBarrat The Barrat et al.’s (2004) weighted clustering coefficient

Warning

The function requires an undirected network. To convert a directed network to undirected use for
instance function upper.tri (see examples).

Note

Part of the code has been adapted from package WGCNA (Langfelder & Horvath, 2008).

Author(s)

Giulio Costantini (giulio.costantini@unimib.it), Sacha Epskamp (mail@sachaepskamp.com)

References

Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of
complex weighted networks. In Proc. Natl. Acad. Sci. USA 101 (pp. 3747-3752).

Costantini, G., Perugini, M. (in press), Generalization of Clustering Coefficients to Signed Correla-
tion Networks

Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics, 9, 559.

Onnela, J. P., Saramaki, J., Kertesz, J., & Kaski, K. (2005). Intensity and coherence of motifs in
weighted complex networks. Physical Review E, 71(6), 065103.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature,
393(6684), 440-442.

12 cor_auto

Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network
analysis. Statistical Applications in Genetics and Molecular Biology, 4(1).

See Also

centrality_auto

Examples

set.seed(1)
generate a random (directed) network:
net_ig <- igraph::erdos.renyi.game(n=8, p.or.m=.4, type="gnp", directed=TRUE)

convert it to an adjacency matrix:
net <- as.matrix(igraph:::get.adjacency(net_ig, type="both"))

convert it to a signed and weighted network:
net <- net*matrix(rnorm(ncol(net)^2), ncol=ncol(net))

make it undirected:
net[upper.tri(net)] <- t(net)[upper.tri(net)]
clustcoef_auto(net)

cor_auto Automatically compute an apppropriate correlation matrix

Description

This is mainly a wrapper around Lavaan function lavCor (Rosseel, 2012) to compute a correlation
matrix based on pychoric, polyserial and/or Pearson correlations. The wrapper removes all factors
and searches for possible ordinal variabes. A variable is classified as ordinal if it is either ordered
or if it consist of at most 7 unique integer values. After computing the correlations an additional
check will be performed to see if the correlation matrix is positive definite.

Usage

cor_auto(data, select, detectOrdinal = TRUE, ordinalLevelMax = 7, npn.SKEPTIC = FALSE,
forcePD = FALSE, missing = "pairwise", verbose = TRUE)

Arguments

data A data frame

select Variables to select from the data frame (as used in subset)

detectOrdinal Logical, should ordinal variables be detected? If FALSE only variables that are
ordered are treated as ordinal variables

ordinalLevelMax

Integer specyfying the amount of unique integer values a variable should have
to be classified as ordinal

cor_auto 13

npn.SKEPTIC Logical, should the Nonparanormal SKEPTIC from the huge package be ap-
plied if the data is continuous? See huge.npn (Zhao, Liu, Roeder, Lafferty and
Wasserman, 2014)

forcePD If TRUE the function checks if the correlation matrix is positive definite. If the
matrix is not positive definite nearPD from the Matrix package will be used
(Bates and Maechler, 2014).

missing Corresponds to the missing argument in lavCor

verbose Logical, should information be printed to the console?

Value

A correlation matrix

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty and Larry Wasserman (2014). huge: High-
dimensional Undirected Graph Estimation. R package version 1.2.6. http://CRAN.R-project.org/package=huge

Douglas Bates and Martin Maechler (2014). Matrix: Sparse and Dense Matrix Classes and Meth-
ods. R package version 1.1-3. http://CRAN.R-project.org/package=Matrix

Examples

Not run:
Examples from lavCor (lavaan):

library("lavaan")

Holzinger and Swineford (1939) example
HS9 <- HolzingerSwineford1939[,c("x1","x2","x3","x4","x5",

"x6","x7","x8","x9")]

Pearson correlations
cor_auto(HS9)

ordinal version, with three categories
HS9ord <- as.data.frame(lapply(HS9, cut, 3, labels=FALSE))

polychoric correlations, two-stage estimation
cor_auto(HS9ord)

End(Not run)

14 EBICglasso

EBICglasso Compute Gaussian graphical model using graphical lasso based on
extended BIC criterium.

Description

This function uses the glasso package (Friedman, Hastie and Tibshirani, 2011) to compute a sparse
gaussian graphical model with the graphical lasso (Friedman, Hastie and Tibshirani, 2008). The
tuning parameter is chosen using the Extended Bayesian Information criterium (EBIC).

Usage

EBICglasso(S, n, gamma = 0.5, penalize.diagonal = FALSE, nlambda = 100,
lambda.min.ratio = 0.01, returnAllResults = FALSE, checkPD = TRUE,

penalizeMatrix, countDiagonal = FALSE, refit = FALSE, threshold = FALSE,
verbose = TRUE, ...)

Arguments

S A covariance or correlation matrix
n Sample size used in computing S

gamma EBIC tuning parameter. 0.5 is generally a good choice. Setting to zero will
cause regular BIC to be used.

penalize.diagonal

Should the diagonal be penalized?
nlambda Number of lambda values to test.
lambda.min.ratio

Ratio of lowest lambda value compared to maximal lambda
returnAllResults

If TRUE this function does not return a network but the results of the entire glasso
path.

checkPD If TRUE, the function will check if S is positive definite and return an error if
not. It is not advised to use a non-positive definite matrix as input as (a) that can
not be a covariance matrix and (b) glasso can hang if the input is not positive
definite.

penalizeMatrix Optional logical matrix to indicate which elements are penalized
countDiagonal Should diagonal be counted in EBIC computation? Defaults to FALSE. Set to

TRUE to mimic qgraph < 1.3 behavior (not recommended!).
refit Logical, should the optimal graph be refitted without LASSO regularization?

Defaults to FALSE.
threshold Logical, should elements of the precision matrix that are below (log(p*(p-1)/2))

/ sqrt(n) be removed (both before EBIC computation and in final model)? Set to
TRUE to ensure high specificity.

verbose Logical, should progress output be printed to the console?
... Arguments sent to glasso

EBICglasso 15

Details

The glasso is run for 100 values of the tuning parameter logarithmically spaced between the max-
imal value of the tuning parameter at which all edges are zero, lamba_max, and lambda_max/100.
For each of these graphs the EBIC is computed and the graph with the best EBIC is selected. The
partial correlation matrix is computed using wi2net and returned. When threshold = TRUE, ele-
ments of the inverse variance-covariance matrix are first thresholded using the theoretical bound
(Jankova and van de Geer, 2018).

Value

A partial correlation matrix

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3), 432-441. Chicago

Jerome Friedman, Trevor Hastie and Rob Tibshirani (2011). glasso: Graphical lasso-estimation of
Gaussian graphical models. R package version 1.7. http://CRAN.R-project.org/package=glasso

Foygel, R., & Drton, M. (2010, November). Extended Bayesian Information Criteria for Gaussian
Graphical Models. In NIPS (pp. 604-612). Chicago

Revelle, W. (2014) psych: Procedures for Personality and Psychological Research, Northwestern
University, Evanston, Illinois, USA, http://CRAN.R-project.org/package=psych Version = 1.4.4.

Bates, D., and Maechler, M. (2014). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 1.1-3. http://CRAN.R-project.org/package=Matrix

Jankova, J., and van de Geer, S. (2018) Inference for high-dimensional graphical models. In: Hand-
book of graphical models (editors: Drton, M., Maathuis, M., Lauritzen, S., and Wainwright, M.).
CRC Press: Boca Raton, Florida, USA.

Examples

Not run:
Using bfi dataset from psych
library("psych")
data(bfi)

Compute correlations:
CorMat <- cor_auto(bfi[,1:25])

Compute graph with tuning = 0 (BIC):
BICgraph <- EBICglasso(CorMat, nrow(bfi), 0, threshold = TRUE)

Compute graph with tuning = 0.5 (EBIC)
EBICgraph <- EBICglasso(CorMat, nrow(bfi), 0.5, threshold = TRUE)

16 FDRnetwork

Plot both:
layout(t(1:2))
BICgraph <- qgraph(BICgraph, layout = "spring", title = "BIC", details = TRUE)
EBICgraph <- qgraph(EBICgraph, layout = "spring", title = "EBIC")

Compare centrality and clustering:
layout(1)
centralityPlot(list(BIC = BICgraph, EBIC = EBICgraph))
clusteringPlot(list(BIC = BICgraph, EBIC = EBICgraph))

End(Not run)

FDRnetwork Model selection using local False Discovery Rate

Description

This function is a wrapper arounf fdrtool to easilly compute a correlation or partial correlation
network in which all nonsignificant edges are set to zero.

Usage

FDRnetwork(net, cutoff = 0.1, method = c('lfdr', 'pval', 'qval'))

Arguments

net A correlation or partial correlation matrix

cutoff The cutoff value to use. The edges of which the value of the first element of
method are higher than the cutoff are removed. Thus, by default, edges with a
local false discovery rate of higher than 0.1 are removed from the graph.

method The method to use with the cutoff. Can be 'lfdr' for the local false discobvery
rate, 'pval' for the p-value of 'qval' for the q-value.

Details

method = 'lfdr' could result in a very sparse network, so also looking at other values is advisable.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Bernd Klaus and Korbinian Strimmer. (2014). fdrtool: Estimation of (Local) False Discovery Rates
and Higher Criticism. R package version 1.2.12. http://CRAN.R-project.org/package=fdrtool

FDRnetwork 17

Examples

Not run:
Using bfi dataset from psych
library("psych")
data(bfi)

CORRELATIONS
Compute correlations:
CorMat <- cor_auto(bfi[,1:25])

Run local FDR:
CorMat_FDR <- FDRnetwork(CorMat)

Number of edges remaining:
mean(CorMat_FDR[upper.tri(CorMat_FDR,diag=FALSE)]!=0)

None, so might use different criterion:
CorMat_FDR <- FDRnetwork(CorMat, method = "pval")

Compare:
L <- averageLayout(CorMat, CorMat_FDR)

layout(t(1:2))
qgraph(CorMat, layout = L, title = "Correlation network",

maximum = 1, cut = 0.1, minimum = 0, esize = 20)
qgraph(CorMat_FDR, layout = L, title = "Local FDR correlation network",

maximum = 1, cut = 0.1, minimum = 0, esize = 20)

Centrality:
centralityPlot(list(cor=CorMat, fdr = CorMat_FDR))

PARTIAL CORRELATIONS
Partial correlation matrix:
library("parcor")
PCorMat <- cor2pcor(CorMat)

Run local FDR:
PCorMat_FDR <- FDRnetwork(PCorMat, cutoff = 0.1, method = "pval")

Number of edges remaining:
mean(PCorMat_FDR[upper.tri(PCorMat_FDR,diag=FALSE)]!=0)

Compare:
L <- averageLayout(PCorMat, PCorMat_FDR)

layout(t(1:2))
qgraph(PCorMat, layout = L, title = "Partial correlation network",

maximum = 1, cut = 0.1, minimum = 0, esize = 20)
qgraph(PCorMat_FDR, layout = L, title = "Local FDR partial correlation network",

maximum = 1, cut = 0.1, minimum = 0, esize = 20)

18 flow

Centrality:
centralityPlot(list(cor=PCorMat, fdr = PCorMat_FDR))

End(Not run)

flow Draws network as a flow diagram showing how one node is connected
to all other nodes

Description

This function will draw one node of interest on the left, then subsequently draw all other nodes in
vertical levels to the right, in the order of direct (unweighted) connectiveness to the node of interest.
Layout is based on the layout_as_tree function from the igraph package. This allows one to see
how one node connects to other nodes in the network.

Usage

flow(object, from, horizontal = TRUE, equalize = TRUE, minCurve = 1, maxCurve = 4,
unfadeFirst = FALSE, fade = TRUE, labels, ...)

Arguments

object A qgraph object

from Integer or character indicating the (label of the) node of interest.

horizontal Logical, should the flow diagram be plotted horizontally or vertically

equalize Logical, should the placement of nodes be equalized per level.

minCurve Minimum curve of edges on the same level

maxCurve Maximum curve of edges on the same level

unfadeFirst Logical, should edges between the node of interest be unfaded?

fade ’fade’ argument as used in qgraph

labels ’labels’ argument as used in qgraph

... Arguments sent to qgraph

Author(s)

Sacha Epskamp

getWmat 19

Examples

Not run:
Load data:
library("psych")
data(bfi)

Compute polychoric correlations:
corMat <- cor_auto(bfi[,1:25])

Glasso network:
g2 <- qgraph(corMat, cut = 0, graph = "glasso", sampleSize = nrow(bfi),

threshold = TRUE)

Flow from A2:
flow(g2, "A2", horizontal = TRUE)

End(Not run)

getWmat Obtain a weights matrix

Description

This function extracts a weights matrix from various kinds of objects.

Usage

S3 method for class 'matrix'
getWmat(x,nNodes,labels, directed = TRUE,...)
S3 method for class 'data.frame'
getWmat(x,nNodes,labels, directed = TRUE,...)
S3 method for class 'igraph'
getWmat(x,labels,...)
S3 method for class 'qgraph'
getWmat(x,directed,...)

Arguments

x An input object

nNodes Number of Nodes

labels A vector specifying the labels of each node

directed Logical indicating if the graph should be directed

... Ignored

Value

A weights matrix

20 ggmFit

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

ggmFit Obtain fit measures of a Gaussian graphical model

Description

Obtain fit measures of a given Gaussian graphical model (GGM). Input can be either a partial
correlation matrix, inverse covariance matrix or qgraph object.

Usage

ggmFit(pcor, covMat, sampleSize, refit = TRUE, ebicTuning = 0.5,
nPar, invSigma, tol = sqrt(.Machine$double.eps), verbose = TRUE,
countDiagonalPars = TRUE)

Arguments

pcor Implied partial correlation matrix or qgraph object.

covMat Observed variance-covariance matrix

sampleSize The sample size used in computing the variance-covariance matrix

refit Logical, should the network be refitted using glasso?

ebicTuning EBIC tuning parameter.

invSigma Implied inverse variance-covariance matrix. If this object is assigned pcor is
not used.

nPar Number of parameters, if not specified this is retrieved from the number of ze-
roes in the inverse variance–covariance matrix. Can be used to compute fit mea-
sures of any statistical model (e.g., SEM).

tol Tolerance for setting an edge to zero.

verbose Logical, should progress reports be printed to the console?

countDiagonalPars

Logical, should the diagonal of the precision matrix be counted as parameters?

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

ggmModSelect 21

Examples

library("psych")

Load BFI data:
data(bfi)
bfi <- bfi[,1:25]

Covariance matrix:
CovMat <- cov(bfi[,1:25], use="pairwise.complete.obs")

Compute network:
EBICgraph <- qgraph(CovMat, graph = "glasso", sampleSize = nrow(bfi),

tuning = 0.5, layout = "spring", title = "BIC", details = TRUE)

Obtain fit measures:
fitNetwork <- ggmFit(EBICgraph, CovMat, nrow(bfi))
fitNetwork

ggmModSelect Unregularized GGM model search

Description

This function will search for an optimal Gaussian graphical model by minimizing the (extended)
Bayesian information criterion of unregularized GGM models. Selecting unregularized GGMs ac-
cording to EBIC has been shown to converge to the true model (Foygel & Drton, 2010). The al-
gorithm starts with refitting models from the glassopath, and subsequently adds and removes edges
until EBIC can no longer be improved (see details). Note, contrary to EBICglasso, the default for
the EBIC hyperparameter gamma is set to 0, indicating BIC model selection.

Usage

ggmModSelect(S, n, gamma = 0, start = c("glasso", "empty", "full"), stepwise = TRUE,
considerPerStep = c("subset", "all"), verbose = TRUE, nCores = 1, checkPD = TRUE,
criterion = 'ebic', ...)

Arguments

S A covariance or correlation matrix

n Sample size used in computing S

gamma EBIC tuning parameter. 0 (default) leads to BIC model selection. 0.25 or 0.5
are typical choices for more conservative model selection.

start What model should stepwise search start from? "glasso" to first run glasso
to obtain the best fitting model, "empty" for an empty network, "full" for a
saturated network, or a matrix encoding the starting network.

stepwise Logical indicating if stepwise model search should be used.

22 ggmModSelect

considerPerStep

"subet" to only consider changing edges that previously indicated improvement
in EBIC, unless changing no edge indicated an improvement to EBIC, in which
case all edges are again considered (see details). "all" will consider changing
all edges at every step.

verbose Logical, should progress reports be printed to the console?

nCores The number of cores to use in testing models.

checkPD If TRUE, the function will check if S is positive definite and return an error if
not. It is not advised to use a non-positive definite matrix as input as (a) that can
not be a covariance matrix and (b) glasso can hang if the input is not positive
definite.

criterion String indicating an output of ggmFit to be minimized

... Arguments sent to glasso

Details

The full algorithm is as follows:

1. Run glasso to obtain 100 models

2. Refit all models without regularization

3. Choose the best according to EBIC

4. Test all possible models in which one edge is changed (added or removed)

5. If no edge can be added or changed to improve EBIC, stop here

6. Change the edge that best improved EBIC, now test all other edges that would have also lead to
an increase in EBIC again

7. If no edge can be added or changed to improve EBIC, go to 4, else, go to 6.

When stepwise = FALSE, steps 4 to 7 are ignored. When considerPerStep = "all", all edges are
considered at every step. Note that this algorithm is very slow in higher dimensions (e.g., above 30-
40 nodes). Note that EBIC computation is slightly different as in EBICglasso and instead follows
the implementation in Lavaan.

Value

A list with the following elements:

graph The optimal partial correlation network

EBIC EBIC corresponding to optimal network.

Author(s)

Sacha Epskamp

References

Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical
models. In Advances in neural information processing systems (pp. 604-612).

makeBW 23

Examples

Not run:
Load data:
library("psych")
data(bfi)

Compute polychoric correlations:
corMat <- cor_auto(bfi[,1:25])

Optimize network:
Results <- ggmModSelect(corMat, nrow(bfi), gamma = 0.5, nCores = 8)

Plot results:
qgraph(Results$graph, layout = "spring", cut = 0)

End(Not run)

makeBW A qgraph plot can be understood in black and white

Description

Plot a qgraph network that can be understood also in black and white or grayscale. Positive lines are
full and negative ones are dashed. Nodes colors are associated to unique motifs. Up to 12 different
motifs are supported at the moment.

Usage

makeBW(x, colorlist = NA, plot = TRUE)

Arguments

x A qgraph object
colorlist Optional: a vector of colors. See details.
plot logical: if FALSE, the network is not plotted.

Details

If no colorlist is specified, each color is randomly associated to one of the motifs. Specifying
colorlist serves for (a) assigning colors to a specific motif, because the first color in the vector will
always be associated to the first motif (this can be used e.g., for being consistent across plots), or
(b) for associating motifs only to some of the colors, but not to others, since only in colors in the
colorlist are associated to motifs if a colorlist is specified.

Value

Silently returns a qgraph object "x" in which two new elements are present, "$graphAttributes$Nodes$density"
and "$graphAttributes$Nodes$angles", which affect how the nodes are plotted. Can also be further
customized and then re-plotted using plot(x).

24 mat2vec

Author(s)

Giulio Costantini

Examples

set.seed(1)
x <- cor(matrix(rnorm(25), nrow = 5))
colors <- c("red", "red", "blue", "blue", "white")

colored qgraph plot
qg <- qgraph(x, colors = colors)

randomly assing motifs to colors (notice that white nodes stay white)
makeBW(qg)
associate a motif only to one of the colors
makeBW(qg, colorlist = c("blue"))
define an order, which allows to choose motifs
makeBW(qg, colorlist = c("blue", "red"))
makeBW(qg, colorlist = c("red", "blue"))

mat2vec Weights matrix to vector

Description

Converts a weights matrix to a vector of weights. If the matrix is symmetrical only upper triangle
values are returned in the vector.

Usage

mat2vec(x, diag = FALSE, tol = 1e-10)

Arguments

x A weights matrix

diag Logical: should diagonal values be included?

tol Tolerance level

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

mutualInformation 25

mutualInformation Computes the mutual information between nodes

Description

Computes the mutual information from one node to all other nodes, or between sets of nodes.

Usage

mutualInformation(ggm, from, to = "all", covMat)

Arguments

ggm Partial correlation network. Can be missing if ’covMat’ is supplied.
from Integer vector corresponding to one set of nodes. Defaults to all nodes.
to Integer vector corresponding to another set of nodes, or 'all' to compute the

mutual information of each node to all other nodes.
covMat Variance-covariance matrix. Can be missing if ’ggm’ is supplied.

Author(s)

Sacha Epskamp

pathways Highlight shortest pathways in a network

Description

This function highlights the shortest paths between nodes in a network made by qgraph. Based on
Isvoranu et al. (2016).

Usage

pathways(graph, from, to, fading = 0.25, lty = 3)

Arguments

graph Output from qgraph.
from A vector indicating the first set of nodes between which pathways should be

highlighted. Can be numeric or characters corresponding to node labels.
to A vector indicating the second set of nodes between which pathways should be

highlighted. Can be numeric or characters corresponding to node labels.
fading The fading of the edges that are not part of shortest paths between ’from’ and

’to’.
lty The line type of the edges that are not part of shortest paths between ’from’ and

’to’.

26 plot.qgraph

Author(s)

Sacha Epskamp and Adela M. Isvoranu

References

Isvoranu, A. M., van Borkulo, C. D., Boyette, L. L., Wigman, J. T., Vinkers, C. H., Borsboom, D.,
& Group Investigators. (2016). A Network Approach to Psychosis: Pathways Between Childhood
Trauma and Psychotic Symptoms. Schizophrenia bulletin, sbw055.

See Also

qgraph

Examples

library("qgraph")
library("psych")
data(bfi)

Compute correlations:
CorMat <- cor_auto(bfi[,1:25])

Compute graph with tuning = 0 (BIC):
BICgraph <- qgraph(CorMat, graph = "glasso", sampleSize = nrow(bfi),

tuning = 0, layout = "spring", title = "BIC", details = TRUE)

All paths between Agreeableness and Neuroticism:
pathways(BICgraph,

from = c("A1","A2","A3","A4","A5"),
to = c("N1","N2","N3","N4","N5"))

plot.qgraph Plot method for "qgraph"

Description

Plots an object created by qgraph.

Usage

S3 method for class 'qgraph'
plot(x, ...)

Arguments

x A "qgraph" object

... Not used

print.qgraph 27

Details

If the result of qgraph is stored, such as Graph <- qgraph(...), the plot can be recreated in two
ways. qgraph(Graph, ...)) reruns qgraph with the same arguments used in the origina call except
those restated in the dots. For example qgraph(Graph, shape = "square") will recreate the same
plot but now use square nodes instead of circular. plot(Graph) will NOT rerun qgraph but simply
plot the qgraph object. This means that now specific graph attributes can be changed before plotting.

More specific, qgraph(Graph) will base the new plot on the Arguments element of the qgraph
object and plot(qgraph) will base the new plot on the graphAttributes element of qgraph.

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

print.qgraph Print edgelist

Description

This function prints the edgelist of a "qgraph" object

Usage

S3 method for class 'qgraph'
print(x, ...)

Arguments

x A "qgraph" object

... These arguments are not used

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

See Also

qgraph

28 qgraph

qgraph qgraph

Description

This is the main function of qgraph which automatically creates an appropriate network and sends
it to the plotting method.

Usage

qgraph(input, ...)

Arguments

input Can be either a weights matrix or an edgelist. Can also be an object of class
"sem" (sem), "mod" (sem), "lavaan" (lavaan), "principal" (psych), "loadings"
(stats), "factanal" (stats), "graphNEL" (Rgraphviz), "pcAlgo" (pcalg), "huge"
(huge), "select" (huge) or the output of glasso

... Any additional arguments described below. Also a list with class "qgraph" can
be added that contains any of these arguments (this is returned invisibly by the
function)

Details

Because of the amount of arguments the usage of the qgraph function has been reduced by using
the ... method for clarity. This does mean that arguments need to be specified by using their exact
name. For instance, to specify color="red" you can not use col="red".

Important to note is that qgraph needs to compute in many graphs where the border of nodes are in
the plotting area. If the graph is manually rescaled (such as through the "zoom" option in RStudio)
the plotting area is changed. This means that the computed location of the border of nodes is no
longer valid if the nodes are to remain perfectly square or circular. To overcome this, the usePCH
argument can be used. If this argument is set to FALSE nodes will be plotted as polygons meaning
they will rescale with rescaling the graph (circles can become ovals) and not have perfect resolution
in PDF files. If usePCH is set to TRUE a default plotting symbol is used meaning the graph can not
be rescaled but the node will look good in PDF. By defaut, qgraph sets usePCH to TRUE if it detects
the graph is stored in a file.

While the usePCH argument makes graphs rescalable it is not a perfect solution. It is highly recom-
mended to NOT RESCALE PLOTTING AREAS when using qgraph, or to rerun qgraph after the
plotting area is rescaled. This means using save graph option fro RStudio shoud be avoided in favor
of the filetype argument in qgraph

Value

qgraph returns (invisibly) a ’qgraph’ object containing:

Edgelist A list containing for each edge the node of origin, node of destination, weight
en wether the edge is directed and bidirectional.

qgraph 29

Arguments A list containing the arguments used in the qgraph call.
plotOptions A list containing numerous options used in the plotting method.
graphAttributes

A list containing numerous attributes for nodes, edges and the entire graph
layout A matrix containing the layout used in the plot
layout.orig A matrix containing the original (unscaled) layout.

Important additional arguments

layout This argument controls the layout of the graph. "circle" places all nodes in a single circle,
"groups" gives a circular layout in which each group is put in separate circles and "spring"
gives a force embedded layout. It also can be a matrix with a row for each node and x and
y coordinates in the first and second column respectively. Defaults to "circular" in weighted
graphs without a groups list, "groups" in weighted graphs with a groups list, and "spring" in
unweighted graphs. Can also be a function from the igraph package.

groups An object that indicates which nodes belong together. Can be a list in which each element
is a vector of integers identifying the numbers of the nodes that belong together, or a factor.

minimum Edges with absolute weights under this value are not shown (but not omitted). Defaults
to 0. Can also be set to "sig" to only show significant edges for graph = "cor" and graph =
"pcor"). Significance level is controlled by alpha and bonf arguments

maximum qgraph regards the highest of the maximum or highest absolute edge weight as the
highest weight to scale the edge widths too. To compare several graphs, set this argument to a
higher value than any edge weight in the graphs (typically 1 for correlations).

cut In weighted graphs, this argument can be used to cut the scaling of edges in width and color
saturation. Edges with absolute weights over this value will have the strongest color intensity
and become wider the stronger they are, and edges with absolute weights under this value
will have the smallest width and become vaguer the weaker the weight. If this is set to 0, no
cutoff is used and all edges vary in width and color. Defaults to 0 for graphs with less then 20
nodes. For larger graphs the cut value is automatically chosen to be equal to the maximum of
the 75th quantile of absolute edge strengths or the edge strength corresponding to 2n-th edge
strength (n being the number of nodes.)

details Logical indicating if minimum, maximum and cutoff score should be printed under the
graph. Defaults to FALSE.

threshold A numeric value that defaults to 0. Edges with absolute weight that are not above this
value are REMOVED from the network. This differs from minimum which simply changes
the scaling of width and color so that edges with absolute weight under minimum are not
plotted/invisible. Setting a threshold influences the spring layout and centrality measures ob-
tained with the graph whereass setting a minimum does not. In the case of correlation (graph
= "cor") or partial correlation (graph = "pcor") networks this argument can also be given a
string to omit insignificant edges. See description of this argumet in the next section (Addi-
tional options for correlation/covariance matrices).

palette The palette used for coloring nodes when the groups argument is used. Can be one
of "rainbow" (default), "colorblind" (making use of http://jfly.iam.u-tokyo.ac.jp/color/),
"pastel", "gray", "R" and "ggplot2".

theme This argument sets different defaults for various graphical arguments (most notably posCol,
negCol and palette). Can be "classic", "colorblind", "gray", "Hollywood", "Borkulo",
"gimme", "TeamFortress", "Reddit", "Leuven" or "Fried".

30 qgraph

Additional options for correlation/covariance matrices

graph Type of graph to be made when a correlation or covariance matrix is used as input. Setting
this to other values than "default" will check if the matrix is a correlation or covariance
matrix; if the matrix is not positive definite nearPD from the Matrix package will be used.
Options are:

"cor" Plots a correlation network. Runs cov2cor if input is detected to be a covariance
matrix and plots the input as is

"pcor" Plots a partial correlation network, using cor2pcor from the parcor package (Krae-
mer, Schaefer and Boulesteix, 2009) on the input matrix

"glasso" Will run EBICglasso to obtain an optimal sparse estimate of the partial correlation
matrix using the glasso package (Friedman, Hastie and Tibshirani, 2011)

Outdated and limited supported options are "factorial", which will create a graph based on
an exploratory factor analysis, and "sig" will transform all correlations in p-values (using the
fdrtool package; Korbinian Strimmer, 2014) and force mode="sig". "sig2" will do the same
but show p-values based on negative statistics in shades of orange

threshold In addition to a numeric value to omit edges this argument can also be assigned a string to
omit insignficant edges. Note that this REMOVES edges from the network (which influences
centrality measures and the spring layout). Can be "sig" to compute significance without
correction for multiple testing, "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr" or "none" which are used directly in the adjust argument in corr.p of the psych
package (Revelle, 2014). In addition, this argument can be assigned "locfdr" in which edges
are set to zero if the local FDR is below FDRcutoff. fdrtool from the fdrtool package (Klaus
and Strimmer, 2014) is used to compute these measures, which is used inside FDRnetwork.

sampleSize The sample-size. Used when graph = "glasso" or minimum = "sig"

tuning A tuning parameter used in estimation. Currently only used when graph = "glasso" and
corresponds to the gamma argument

lambda.min.ratio The minimal lambda ratio used in EBICglasso, defaults to 0.01.

gamma Alias for tuning (overwrites the tuning argument).

refit Logical, should the optimal graph be refitted without LASSO regularization? Defaults to
FALSE and only used if graph = "glasso".

countDiagonal Should diagonal be counted in EBIC computation? Defaults to FALSE. Set to TRUE
to mimic qgraph < 1.3 behavior (not recommended!).

alpha The significance level (defaults to 0.05) to be used for not showing edges if minimum =
"sig".

bonf Logical indicating if a bonferonni correction should be applied if minimum = "sig".

FDRcutoff Cutoff used in which partial correlations should be included if graph = "fdr". Defaults
to 0.9

Output arguments

mar A vector of the form c(bottom, left, top, right) which gives the margins. Works similar to the
argument in par(). Defaults to c(3,3,3,3)

qgraph 31

filetype A character containing the file type to save the output in. "R" outputs in a new R window,
"pdf" creates a pdf file. "svg" creates a svg file (requires RSVGTipsDevice). "tex" creates
LaTeX code for the graph (requires tikzDevice). ’jpg’, ’tiff’ and ’png’ can also be used. If this
is given any other string (e.g. filetype="") no device is opened. Defaults to ’R’ if the current
device is the NULL-device or no new device if there already is an open device. A function
such as x11 can also be used

filename Name of the file without extension

width Width of the plot, in inches

height Height of the plot, in inches

normalize Logical, should the plot be normalized to the plot size. If TRUE (default) border width,
vertex size, edge width and arrow sizes are adjusted to look the same for all sizes of the plot,
corresponding to what they would look in a 7 by 7 inches plot if normalize is FALSE.

DoNotPlot Runs qgraph but does not plot. Useful for saving the output (i.e. layout) without
plotting

plot Logical. Should a new plot be made? Defaults to TRUE. Set to FALSE to add the graph to the
existing plot.

rescale Logical. Defines if the layout should be rescaled to fit the -1 to 1 x and y area. Defaults to
TRUE. Can best be used in combination with plot=FALSE.

standAlone Logical. If filetype="tex" this argument can be used to choose between making the
output a standalone LaTeX file or only the codes to include the graph.

Graphical arguments

Nodes: These arguments influence the plotting of nodes in qgraph. Most of them can be assigned
a single value or a vector with a value for each node.

color A vector with a color for each element in the groups list, or a color for each node. Defaults
to the background color ("bg" argument, which defaults to "white") without groups list and
rainbow(length(groups)) with a groups list.

vsize A value indicating the size of the nodes (horizontal if shape is "rectangle". Can also be a
vector of length 2 (nodes are scaled to degree) or a size for each node. Defaults to 8*exp(-
nNodes/80)+1

vsize2 A value indicating the vertical size of the nodes where the shape is "rectangle". Can also
be a vector of length 2 (nodes are scaled to degree) or a size for each node. Defaults to the
value of ’vsize’. If ’vsize’ is not assigned this value is used as a scalar to ’vsize’ (e.g., vsize2
= 1/2 would result in rectangled nodes where the height is half the default width)

node.width Scalar on the default value of ’vsize’. Defaults to 1.
node.height Scalar on the default value of ’vsize2’. Defaults to 1.
borders Logical indicating if borders should be plotted, defaults to TRUE.
border.color Color vector indicating colors of the borders. Is repeated if length is equal to 1.

Defaults to "black"
border.width Controls the width of the border. Defaults to 2 and is comparable to ’lwd’ argument

in ’points’.
shape A character containing the shape of the nodes. "circle", "square", "triangle" and

"diamond" are supported. In addition, can be a name of an element of polygonList to plot
the corresponding polygon (not reccomended for large graphs), which by default includes

32 qgraph

shapes "ellipse" and "heart" Can also be a vector with a shape for each node. Defaults to
"circle".

polygonList A list contaning named lists for each element to include polygons to lookup in the
shape argument. Each element must be named as they are used in shape and contain a list
with elements x and y contaning the coordinates of the polygon. By default ellipse and
heart are added to this list. These polygons are scaled according to vsize and vsize2

vTrans Transparency of the nodes, must be an integer between 0 and 255, 255 indicating no
transparency. Defaults to 255

subplots A list with as elements R expressions or NULL for each node. If it is an R expression it
is evaluated to create a plot for the node.

subpars List of graphical parameters to be used in the subplots
subplotbg Background to be used in the sublots. If missing inherits from ’background’ argument.
images A character vector of length 1 or the same length as the number of nodes indicating the

file location of PNG or JPEG images to use as nodes. Can be NA to not plot an image as
node and overwrites ’subplots’

noPar Set to TRUE to not have qgraph run the par function. Useful when sending qgraph plots as
sublots using subplots.

pastel Logical, should default colors (for groups or edge equality constraints) be chosen from
pastel colors? If TRUE then rainbow_hcl is used.

rainbowStart A number between 0 and 1 indicating the offset used in rainbow functions for
default node coloring.

usePCH Logical indicating if nodes should be drawn using polygons or base R plotting symbols.
Defaults to TRUE if more than 50 nodes are used in the graph or if the graph is stored in a file.
See details.

node.resolution Resolution of the nodes if usePCH=FALSE. Defaults to 100
title String with a title to be drawn in the topleft of the plot.
title.cex Size of the title, defaults to 1.
preExpression A parsable string containing R codes to be evaluated after opening a plot and

before drawing the graph.
postExpression A parsable string containing R codes to be evaluated just before closing the

device.
diag Should the diagonal also be plotted as edges? defaults to FALSE. Can also be "col" to plot

diagonal values as vertex colors.

Node labels: These arguments influence the plotting of node labels in qgraph. Most of them can
be assigned a single value or a vector with a value for each node.

labels If FALSE, no labels are plotted. If TRUE, order in weights matrix is used as labels. This
can also be a vector with a label for each node. Defaults for graphs with less than 20 nodes
to a 3 character abbreviation of the columnames and rownames if these are identical or else
to TRUE. If a label contains an asterisk (e.g. "x1*") then the asterisk will be omitted and the
label will be printed in symbol font (use this for Greek letters). Can also be a list with a label
as each element, which can be expressions for more advanced mathematical annotation.

label.cex Scalar on the label size.
label.color Character containing the color of the labels, defaults to "black"
label.prop Controls the proportion of the width of the node that the label rescales to. Defaults to

0. 9.

qgraph 33

label.norm A single string that is used to normalize label size. If the width of the label is lower
than the width of the hypothetical label given by this argument the width of label given by
this argument is used instead. Defaults to "OOO" so that every label up to three characters
has the same font size.

label.scale Logical indicating if labels should be scaled to fit the node. Defaults to TRUE.
label.scale.equal Logical, set to TRUE to make make the font size of all labels equal
label.font Integer specifying the label font of nodes. Can be a vector with value for each node
label.fill.vertical Scalar (0 - 1) indicating the maximum proportion a label may fill a node verti-

cally.
label.fill.horizontal Scalar (0 - 1) indicating the maximum proportion a label may fill a node

horizontally.
node.label.offset A vector of length two with the x and y offset coordinates of the node label

(e.g., c(0.5, 0.5) is the default and centers the label with respect to the node area). The
vector is passed to the adj argument of graphics::text function.

node.label.position Either a numeric vector of length 1 (i.e., it gets recycled) or of length equal
to the number of nodes in the network, used to set the positions of the node labels. Takes
values between 1 and 4 as follows: 1 - bottom; 2 - left; 3 - top; 4 - right. Overrides the
node.label.offset argument and values are passed to the pos argument of graphics::text
function. Defaults to NULL.

Edges: These arguments influence the plotting of edges qgraph. Most of them can be assigned a
single value, a vector with a value per edge when an edgelist is used as input or a matrix containing
values for each edge when a wheights matrix is used as input.

esize Size of the largest edge (or what it would be if there was an edge with weight maximum).
Defaults to 15*exp(-nNodes/90)+1) for weighted graphs and 2 for unweighted graphs. In
directed graphs these values are halved.

edge.width Scalar on ’esize’ and ’asize’ arguments to make edges wider with a single argument.
’esize’ is multiplied with this value and ’asize’ with the square root of this value.

edge.color Color of edges. Can be either a single value to make all edges the same color, a matrix
with a color for each edge (when using a weights matrix) or a vector with a color for each
edge (when using an edgelist). NA indicates that the default color should be used. Note that
unless fade=FALSE colors still fade to white corresponding to their strength

posCol Color of positive edges. Can be a vector of two to indicate color of edges under ’cut’
value and color of edges over ’cut’ value. If ’fade is set to TRUE the first color will be faded
the weaker the edge weight is. If this is only one element this color will also be used for
edges stronger than the ’cut’ value. Defaults to c("#009900","darkgreen")

negCol Color of negative edges. Can be a vector of two to indicate color of edges under ’cut’
value and color of edges over ’cut’ value. If ’fade is set to TRUE the first color will be faded
the weaker the edge weight is. If this is only one element this color will also be used for
edges stronger than the ’cut’ value. Defaults to c("#BF0000","red")

unCol Color to indicate the default edge color of unweighted graphs. Defaults to "#808080".
probCol Color of the probability edges. Defaults to "blue". Only used when probabilityEdges

= TRUE

negDashed Logical, set to TRUE to make negative edges dashed (overwrites lty).
probabilityEdges Logical, do edges indicate probabilities? If this is set to TRUE posCol is over-

written by probCol. Mainly implemented for automatic generation of graphs

34 qgraph

colFactor Exponent of transformation in color intensity of relative strength. Defaults to 1 for
linear behavior.

trans In weighted graphs: logical indicating if the edges should fade to white (FALSE) or become
more transparent (TRUE; use this only if you use a background). In directed graphs this is a
value between 0 and 1 indicating the level of transparency. (also used as ’transparency’)

fade if TRUE (default) and if ’edge.color’ is assigned, transparency will be added to edges that
are not transparent (or for which no transparency has been assigned) relative to the edge
strength, similar if ’trans’ is set to TRUE.

loopRotation A vector with an element for each node with either NA to let qgraph choose the
rotation of the loop, or the rotation of the loop per node in radian

loop If diag=TRUE, this can be used to scale the size of the loop. defaults to 1.
lty Line type, see ’par’
edgeConnectPoints This argument specifies the point for each edge to which it connects to a

node, in radians. Can be either a matrix with a row for each edge and two columns: The
first column indicates the connection point of the source of the edge and the second column
specifies the connection point of the destination of the edge. Can also be an array with a row
and column for each node two slices which indicate the source and destination of the edge
connecting the two nodes.

Edge Curvature: These arguments control the curvature of edges. Most of them can be assigned
a single value, a vector with a value per edge when an edgelist is used as input or a matrix
containing values for each edge when a wheights matrix is used as input.

curve A value indicating how strongly edges should be curved. Either a single value, a vector
(edgelist input) with a value for each edge or a matrix (weights matrix input). NA indicates
default curve behavior should be used, which only curves edges if there are multiple edges
between two nodes.

curveAll Logical, indicating if all edges should be curved with the value of the ’curve’ or only
edges between nodes that have share multiple edges.

curveDefault The default curvature. Defaults to 1.
curveShape The shape of the curve, as used in xspline. Defaults to -1.
curveScale Logical, should curve scale with distance between nodes. Defaults to TRUE. If FALSE,

the curve can be exactly determined. Recommended to set to TRUE for graphs and FALSE for
diagrams. The curvature is corrected for the number of nodes and will be smaller if there are
more nodes.

curveScaleNodeCorrection Logical, set to FALSE to disable the node correction in curveScale.
Defaults to TRUE. Not recommended. Set to FALSE ONLY if you know what you are doing.

curvePivot Quantile to pivot curves on. This can be used to, rather than round edges, make
straight edges as curves with "knicks" in them. Can be logical or numeric. FALSE (default)
indicates no pivoting in the curved edges, a number indicates the quantile (and one minus
this value as quantile) on which to pivot curved edges and TRUE indicates a value of 0.1.

curvePivotShape The shape of the curve around the pivots, as used in xspline. Defaults to
0.25.

parallelEdge Logical, set to TRUE to draw parallel straight edges rather than curved edges when
there are multiple edges between two nodes. Can be a vector with value per edge for edgelists
or a matrix with a value per edge for weights marices.

qgraph 35

parallelAngle The distance in radians an edge is shifted if parallel=TRUE. Can be set to NA
(default) to determine based on number of edges between two nodes. Can be a vector with
value per edge for edgelists or a matrix with a value per edge for weights marices.

parallelAngleDefault The default value for parallelAngle, indicating the angle of the edge fur-
thest from the center. Defaults to pi/6

Edge Labels: These arguments influence the plotting of edge labels qgraph. Most of them can
be assigned a single value, a vector with a value per edge when an edgelist is used as input or a
matrix containing values for each edge when a weights matrix is used as input.

edge.labels If FALSE, no edge labels are plotted. If TRUE, numerical edge weights are printed
on the edges. This can also be a vector with a label for each edge. Defaults to FALSE. If
a label contains an asterisk (e.g. "y1*") then the asterisk will be omitted and the label will
be printed in symbol font (use this for Greek letters). Can also be a list with a label as each
element, which can be expressions for more advanced mathematical annotation.

edge.label.cex Either a single number or a number per edge used as a scalar of the edge label
size. Defaults to 1.

edge.label.bg Either a logical or character vector/matrix. Indicates the background behind edge
labels. If TRUE (default) a white background is plotted behind each edge label. If FALSE
no background is plotted behind edge labels. Can also be a single color character, a vector or
matrix of color vectors for each edge.

edge.label.margin Margin of the background box around the edge label. Defaults to zero.
edge.label.position Vector of numbers between 0 and 1 controlling the relative position of each

edge label. Defaults to 0.5 for placing edge labels at the middle of the edge.
edge.label.font Integer specifying the label font of edges. Can be a vector or matrix with value

for each node
edge.label.color Character vector indicating the color of the edge labels. It can be either a vector

of length equal to the number of edges in the network or a single character color that will be
applied to all edges.

Layout: Arguments concerning the placement of nodes, in combination with ’layout’.

repulsion Scalar on the default repulse radius in the spring layout. Defaults to 1. Setting this
argument to lower values (e.g., 0.5) will cause nodes in the spring layout to repulse each
other less. This is especially useful if a few unconnected nodes cause the giant component to
visually be clustered too much in the same place.

layout.par A list of arguments passed to qgraph.layout.fruchtermanreingold when layout
= "spring" or to an igraph function when such a function is assigned to ’layout’. Defaults
to list(repulse.rad = nNodes^(repulsion * 3)) if layout = "spring" and list() oth-
erwise.

layoutRound Logical, should weights be rounded (default 10 digits) before computing layouts?
This will hopefully make sure different machines result in the same layout. Defaults to TRUE

layout.control A scalar on the size of the circles created with the circular layout.
aspect Should the original aspect ratio be maintained if rescale = TRUE? Defaults to FALSE. Set

this to TRUE to keep the aspect ratio of the original layout (e.g. result from layout="spring").
rotation A vector that can be used to rotate the circles created with the circular layout. Must

contain the rotation in radian for each group of nodes. Defaults to zero for each group.

Legend: Arguments to control the legend placed on the right side of the graph.

36 qgraph

legend Logical value indicating if a legend should be plotted. Defaults to TRUE if a groups
object or nodeNames is supplied

legend.cex Scalar of the legend. defaults to 1
legend.mode Character string indicating the type of legend to be drawn. "groups" indicates the

legend should be based on the groups object, "names" indicates the legend should be based
on the nodeNames object, and style1 and style2 indicate the legend should be based on
both. Defaults to "style1" if both "groups" and "nodeNames" arguments are used.

GLratio Relative size of the graph compared to the layout. Defaults to 2.5
layoutScale A vector with a scalar for respectively the x and y coordinates of the layout (which

default plotting area is from -1 to 1 on both x and y axis). Setting this to e.g. c(2,2) would
make the plot twice as big. Use this in combination with ’layoutOffset’ and ’plot’ arguments
to define the graph placement on an existing plot.

layoutOffset A vector with the offset to the x and coordinates of the center of the graph (defaults
to (0,0)). Use this in combination with ’layoutScale’ and ’plot’ arguments to define the graph
placement on an existing plot.

nodeNames Names for each node, can be used to plot a legend next to the plot that links the node
labels to node names.

Background: These arguments control the background of the plot

bg If this is TRUE, a background is plotted in which node colors cast a light of that color on a
black background. Can also be a character containing the color of the background Defaults
to FALSE

bgcontrol The higher this is, the less light each node gives if bg=TRUE. Defaults to 6.
bgres square root of the number of pixels used in bg=TRUE, defaults to 100.

General graphical arguments:
pty See ’par’
gray Logical, set to TRUE to plot the graph in grayscale colors
font Integer specifying the default font for node and edge labels

Arguments for directed graphs

directed Logical indicating if edges are directed or not. Can be TRUE or FALSE to indicate if
all edges are directed, a logical vector (when using edgelists) or a logical matrix (when using
weights matrix)

arrows A logical indicating if arrows should be drawn, or a number indicating how much arrows
should be drawn on each edge. If this is TRUE, a simple arrow is plotted, if this is a number,
arrows are put in the middle of the edges.

arrowAngle Angle of the arrowhead, in radians. Defaults to pi/8 for unweighted graphs and pi/4
for weighted graphs.

asize Size of the arrowhead. Defaults to 2*exp(-nNodes/20)+2.

open Logical indicating if open (TRUE) or closed (FALSE) arrowheads should be drawn.

bidirectional If this is TRUE, Then directional edges between nodes that have two edges between
them are not curved. Defaults to FALSE. Can also be a logical vector (when using edgelists)
or a logical matrix (when using weights matrix)

qgraph 37

Arguments for graphs based on significance values

mode This argument defines the mode used for coloring the edges. The default, "strength" assumes
each edge weight indicates the strength of connection centered around and makes positive
edges green and negative edges red. If this is set to "sig" then the edge weights are assumed to
be significance values and colored accordingly. This can also include negative values, which
will be interpreted as p-values based on negative statistics.

alpha The significance level (defaults to 0.05) to be used for not showing edges if minimum =
"sig", or if Graph = "sig" a vector of max 4 elements indicating the alpha level cutoffs.
Defaults to c(0.0001,0.001,0.01,0.05)

sigScale The function used to scale the edges if mode="sig". Defaults to $function(x)0.8*(1-
x)^(log(0.4/0.8,1-0.05))$

bonf Logical indicating if a bonferonni correction should be applied if minimum = "sig" or mode="sig"

Arguments for plotting scores on nodes

scores This argument can be used to plot scores of an individual on the test. Should be a vector
with the scores for each item. Currently this can only be integer values (e.g.\ LIKERT scales).

scores.range Vector of length two indicating the range of the scores, if scores is assigned.

Arguments for manually defining graphs

mode The mode argument (see section on significance graph arguments) can also be used to make
the weights matrix correspond directly to the width of the edges (as in lwd of plot()). To do
this, set mode to "direct".

edge.color This argument can be used to overwrite the colors. Can be either a single value to make
all edges the same color, a matrix with a color for each edge (when using a weights matrix)
or a vector with a color for each edge (when using an edgelist). NA indicates that the default
color should be used. Note that unless fade=FALSE colors still fade to white corresponding to
their strength

Arguments for knots (tying together edges)

knots This argument can be used to tie edges together in their center, which can be useful to, for
example, indicate interaction effects. This argument can be assigned a list where each element
is a vector containing the edge numbers that should be knotted together. Another option is to
assign the argument a integer vector (for edgelists) or a matrix (for weight matrices) with 0
indicating edges that should not be tied together, and increasing numbers indicating each knot.

knot.size The size of the knots. Can be of length one or a vector with the size of each knot. Similar
to ’vsize’. Defaults to 1.

knot.color The color of the knots. Can be of length one or a vector with the size of each knot.
Defaults to NA, which will result in a mix of the knotted edge colors.

knot.borders Logical indicating if a border should be plotted around the knot. Can be of length
one or a vector with the size of each knot. Works similar to ’borders’. Defaults to FALSE

knot.border.color Color of the knot borders. Can be of length one or a vector with the size of each
knot. Works similar to ’border.color’. Defaults to "black"

knot.border.width Width of the knot borders. Can be of length one or a vector with the size of
each knot. Works similar to ’border.width’. Defaults to 1

38 qgraph

Arguments for bars

means A vector with means for every node or NA. Will plot a vertical bar at the location of the
mean between meanRange values. NA omits a bar.

SDs A vector with SDs for every node or NA. Will plot an error bar of 2 times this value around the
means location. NA to omit.

meanRange The range of the means argument. Default to range(means,na.rm=TRUE)

bars A list with for each node containing either NULL or a vector with values between 0 and 1
indicating where bars should be placed inside the node.

barSide Integer for each node indicating at which side the bars should be drawn. 1, 2, 3 or 4
indicating at bottom, left, top or right respectively.

barColor A vector with for each node indicating the color of bars. Defaults to the border color of
the node.

barLength A Vector indicating the relative length of bars of each node compared to the node size.
Defaults to 0.5.

barsAtSide Logical, should bars be drawn at the side of a node or at its center? Defaults to FALSE.

Arguments for pies

pie A vector with values between 0 and 1 for each node (or one value for all nodes). Supplying this
argument will make the border of nodes a pie chart. Can also be a list with vectors to make
pie charts of multiple parts.

pieBorder The size of the pie chart in the border, between 0 and 1. Defaults to 0.15. Set to 1 to
make the whole node a pie chart. Can be a vector with a value for each node.

pieColor Colors of the pie plot parts. Can be a vector with a value for each node, or a list with
multiple values if there are more parts.

pieColor2 Final color of the pie chart. Only added if the values in the ’pie’ argument do not add
up to 1. Defaults to 'white'. Can be a vector with a value for each node.

pieStart A vector with values between 0 and 1 for each node (or one value for all nodes), indicating
the starting point of the pie chart.

pieDarken A vector with values between 0 and 1 for each node (or one value for all nodes), indi-
cating how much darker the pie border color is made than the node color in the default coloring
scheme.

piePastel Should pastel colors be used to fill pie chart parts when more than 2 blocks are used?
pieCImid A vector with values between 0 and 1 for each node (or one value for all nodes), indi-

cating the center point of the confidence region. Overwrites the pie argument
pieCIlower A vector with values between 0 and 1 for each node (or one value for all nodes),

indicating the lower bound of the confidence region. Overwrites the pie argument
pieCIupper A vector with values between 0 and 1 for each node (or one value for all nodes),

indicating the upper bound of the confidence region. Overwrites the pie argument
pieCIpointcex A vector with values between 0 and 1 for each node (or one value for all nodes),

indicating the size of the point estimate of the confidence region. Overwrites the pie argument.
Defaults to 0.01.

pieCIpointcex A vector with values between 0 and 1 for each node (or one value for all nodes), in-
dicating the color of the point estimate of the confidence region. Overwrites the pie argument.
Defaults to "black".

qgraph 39

Additional arguments

edgelist Logical, if TRUE ’input’ is assumed to be an edgelist, else if FALSE input is assumed
to be a weights matrix. By default this is chosen automatically based on the dimensions of
’input’ and this argument is only needed if the dimensions are ambiguous (square matrix with
2 or 3 rows/columns)

weighted Logical that can be used to force either a weighted graph (TRUE) or an unweighted
graph(FALSE).

nNodes The number of nodes, only needs to be specified if the first argument is an edge-list and
some nodes have no edges

XKCD If set to TRUE the graph is plotted in XKCD style based on http://stackoverflow.com/a/12680841/567015.

Using qgraph to plot graphs

The first argument of qgraph(), ’input’, is the input. This can be a number of objects but is mainly
either a weights matrix or an edgelist. Here we will assume a graph is made of n nodes connected
by m edges. qgraph is mainly aimed at visualizing (statistical) relationships between variables
as weighted edges. In these edge weights a zero indicates no connection and negative values are
comparable in strength to positive values. Many (standardized) statistics follow these rules, the
most important example being correlations. In the special case where all edge weights are either 0
or 1 the weights matrix is interpreted as an adjacency matrix and an unweighted graph is made.

a weights matrix is a square n by n matrix in which each row and column represents a node. The
element at row i and column j indicates the connection from node i to node j. If the weights matrix
is symmetrical an undirected graph is made and if the matrix is asymmetrical a directed graph is
made.

Alternatively an edgelist can be used. This is a m by 2 matrix (not a list!) in which each row
indicates an edge. The first column indicates the number of the start of the edge and the second
column indicates the number of the end of the edge. The number of each node is a unique integer
between 1 and n. The total number of nodes will be estimated by taking the highest value of the
edgelist. If this is incorrect (there are nodes with no edges beyond the ones already specified) the
’nNodes’ argument can be used. If an integer between 1 and n is missing in the edgelist it is assumed
to be a node with no edges. To create a weighted graph edge weights can be added as a third column
in the edgelist. By default using an edgelist creates a directed graph, but this can be set with the
’directed’ argument.

Interpreting graphs

In weighted graphs green edges indicate positive weights and red edges indicate negative weights.
The color saturation and the width of the edges corresponds to the absolute weight and scale relative
to the strongest weight in the graph. It is possible to set this strongest edge by using the ’maximum’
argument. When ’maximum’ is set to a value above any absolute weight in the graph that value
is considered the strongest edge (this must be done to compare different graphs; a good value for
correlations is 1). Edges with an absolute value under the ’minimum’ argument are omitted (useful
to keep filesizes from inflating in very large graphs).

In larger graphs the above edge settings can become hard to interpret. With the ’cut’ argument a
cutoff value can be set which splits scaling of color and width. This makes the graphs much easier
to interpret as you can see important edges and general trends in the same picture. Edges with
absolute weights under the cutoff score will have the smallest width and become more colorful as

40 qgraph

they approach the cutoff score, and edges with absolute weights over the cutoff score will be full
red or green and become wider the stronger they are.

Specifying the layout

The placement of the nodes (i.e. the layout) is specified with the ’layout’ argument. It can be
manually specified by entering a matrix for this argument. The matrix must have a row for each
node and two columns indicating its X and Y coordinate respectively. qgraph plots the nodes on
a (-1:1)(-1:1) plane, and the given coordinates will be rescaled to fit this plane unless ’rescale’ is
FALSE (not recommended). Another option to manually specify the layout is by entering a matrix
with more then two columns. This matrix must then consist of zeroes and a number (the order in
the weights matrix) for each node indicating it’s place. For example:

0 0 2 0 0

1 0 3 0 4

will place node 2 at the top in the center, node 1 at the bottom left corner, node 3 at the bottom in the
center and node 4 at the bottom right corner. It is recommended however that one of the integrated
layouts is used. ’layout’ can be given a character as argument to accomplish that. layout="circular"
will simply place all nodes in a circle if the groups argument is not used and in separate circles per
group if the groups argument is used (see next section).

The circular layout is convenient to see how well the data conforms to a model, but to show how the
data clusters another layout is more appropriate. By specifying layout="spring" the Fruchterman-
reingold algorithm (Fruchterman & Reingold, 1991), which has been ported from the SNA package
(Butts, 2010), can be used to create a force-directed layout. In principle, what this function does
is that each node (connected and unconnected) repulse each other, and connected nodes also attract
each other. Then after a number of iterations (500 by default) in which the maximum displacement
of each node becomes smaller a layout is achieved in which the distance between nodes correspond
very well to the absolute edge weight between those nodes.

A solution to use this function for weighted graphs has been taken from the igraph package (Csardi
G & Nepusz T, 2006) in which the same function was ported from the SNA package. New in qgraph
are the option to include constraints on the nodes by fixing a coordinate for nodes or reducing the
maximum allowed displacement per node. This can be done with the ’layout.par’ argument. For
more information see qgraph.layout.fruchtermanreingold.

By default, ’layout’ is set to "spring" for unweighted and directed graphs and "circular" otherwise.

Grouping nodes

Grouping nodes (e.g., according to a measurement model) can be specified with the ’groups’ argu-
ment. This can be a factor or a list in which each element is a vector containing the numbers of
nodes that belong together (numbers are taken from the order in the weights matrix). All numbers
must be included. If a groups list is specified the "groups" layout can be used to place these nodes
together, the nodes in each group will be given a color, and a legend can be plotted (by setting
’legend’ to TRUE). The colors will be taken from the ’color’ argument, or be generated with the
rainbow function.

Output

By default qgraph will plot the graph in a new R window. However the graphs are optimized to be
plotted in a PDF file. To easily create a pdf file set the ’filetype’ argument to "pdf". ’filename’ can

qgraph 41

be used to specify the filename and folder to output in. ’height’ and ’width’ can be used to specify
the height and width of the image in inches. By default a new R window is opened if the current
device is the NULL-device, otherwise the current device is used (note that when doing this ’width’
and ’height’ still optimize the image for those widths and heights, even though the output screen
size isn’t affected, this is especially important for directed graphs!).

Furthermore filetype can also be set to numerous other values. Alternatively any output device in R
can be used by simply opening the device before calling qgraph and closing it with dev.off() after
calling qgraph.

IMPORTANT NOTE: graphs made in qgraph must be exported programatically using device func-
tions such as pdf() and png(). Manually resizing a graph and using export functions such as the one
built into RStudio will give UNSTABLE RESULTS.

Manual specification of color and width

In qgraph the widths and colors of each edge can also be manually controlled. To directly specify
the width of each edge set the ’mode” argument to "direct". This will then use the absolute edge
weights as the width of each edge (negative values can still be used to make red edges). To manually
set the color of each edge, set the ’edge.color’ argument to a matrix with colors for each edge (when
using a weights matrix) or a vector with a color for each edge (when using an edgelist).

Replotting graphs and reusing layouts

If the result of qgraph is stored, such as Graph <- qgraph(...), the plot can be recreated in two
ways. qgraph(Graph, ...)) reruns qgraph with the same arguments used in the origina call except
those restated in the dots. For example qgraph(Graph, shape = "square") will recreate the same
plot but now use square nodes instead of circular. plot(Graph) will NOT rerun qgraph but simply
plot the qgraph object. This means that now specific graph attributes can be changed before plotting.

More specific, qgraph(Graph) will base the new plot only on the Arguments element of the qgraph
object and plot(qgraph) will base the new plot on the graphAttributes and plotOptions ele-
ments of the qgraph object.

To reuse a layout, use the layout element. e.g., to plot a new graph with the same layout use
qgraph(..., layout = Graph$layout)

Additional information

By default, edges will be straight between two nodes unless there are two edges between two nodes.
To overwrite this behavior the ’bidirectional’ argument can be set to TRUE, which will turn two
edges between two nodes into one bidirectional edge. ’bidirectional’ can also be a vector with
TRUE or FALSE for each edge.

To specify the strength of the curve the argument ’curve’ can be used (but only in directional
graphs). ’curve’ must be given a numerical value that represent an offset from the middle of the
straight edge through where the curved edge must be drawn. 0 indicates no curve, and any other
value indicates a curve of that strength. A value of 0.3 is recommended for nice curves. This can
be either one number or a vector with the curve of each edge.

Nodes and edges can be given labels with the ’labels’ and the ’edge.labels’ arguments. ’labels’ can
be set to FALSE to omit labels, TRUE (default) to set labels equal to the node number (order in the
weights matrix) or it can be a vector with the label for each node. Edge labels can also be set to

42 qgraph

FALSE to be omitted (default). If ’edge.labels’ is TRUE then the weight of each label is printed.
Finally, ’edge.labels’ can also be a vector with the label for each edge. If a label (both for edges and
nodes) contain an asterisk then the asterisk is omitted and that label is printed in the symbol font
(useful to print Greek letters).

A final two things to try: the ’scores’ argument can be given a vector with the scores of a person
on each variable, which will then be shown using colors of the nodes, And the ’bg’ argument can
be used to change the background of the graph to another color, or use bg=TRUE for a special
background (do set transparency=TRUE when using background colors other then white).

Debugging

If this function crashes for any reason with the filetype argument specified, run:

dev.off()

To shut down the output device!

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Carter T. Butts <buttsc@uci.edu> (2010). sna: Tools for Social Network Analysis. R package
version 2.2-0. http://CRAN.R-project.org/package=sna

Csardi G, Nepusz T (2006). The igraph software package for complex network research, InterJour-
nal, Complex Systems 1695. http://igraph.sf.net

Sacha Epskamp, Angelique O. J. Cramer, Lourens J. Waldorp, Verena D. Schmittmann, Denny
Borsboom (2012). qgraph: Network Visualizations of Relationships in Psychometric Data. Journal
of Statistical Software, 48(4), 1-18. URL http://www.jstatsoft.org/v48/i04/.

Jerome Friedman, Trevor Hastie and Rob Tibshirani (2011). glasso: Graphical lasso-estimation of
Gaussian graphical models. R package version 1.7. http://CRAN.R-project.org/package=glasso

Bernd Klaus and Korbinian Strimmer. (2014). fdrtool: Estimation of (Local) False Discovery Rates
and Higher Criticism. R package version 1.2.12. http://CRAN.R-project.org/package=

Fruchterman, T. & Reingold, E. (1991). Graph drawing by force-directed placement. Software -
Pract. Exp. 21, 1129-1164.

N. Kraemer, J. Schaefer. A.-L. Boulesteix (2009). Regularized Estimation of Large-Scale Gene
Regulatory Networks using Gaussian Graphical Models BMC Bioinformatics 10:384

Plate, T. <tplate@acm.org> and based on RSvgDevice by T Jake Luciani <jakeluciani@yahoo.com>
(2009). RSVGTipsDevice: An R SVG graphics device with dynamic tips and hyperlinks. R pack-
age version 1.0-1.

Revelle, W. (2014) psych: Procedures for Personality and Psychological Research, Northwestern
University, Evanston, Illinois, USA, http://CRAN.R-project.org/package=psych Version = 1.4.4.

See Also

cor_auto qgraph.animate qgraph.loadings

qgraph 43

Examples

Not run:
Correlations
Load big5 dataset:
data(big5)
data(big5groups)

Compute correlation matrix:
big5_cors <- cor_auto(big5, detectOrdinal = FALSE)

Correlations:
big5Graph <- qgraph(cor(big5),minimum=0.25,groups=big5groups,

legend=TRUE,borders=FALSE, title = "Big 5 correlations")

Same graph with spring layout:
qgraph(big5Graph,layout="spring")

Same graph with different color scheme:
qgraph(big5Graph,posCol="blue",negCol="purple")

Network analysis
Using bfi dataset from psych
library("psych")
data(bfi)

Compute correlations:
CorMat <- cor_auto(bfi[,1:25])

Compute graph with tuning = 0 (BIC):
BICgraph <- qgraph(CorMat, graph = "glasso", sampleSize = nrow(bfi),

tuning = 0, layout = "spring", title = "BIC", details = TRUE)

Compute graph with tuning = 0.5 (EBIC)
EBICgraph <- qgraph(CorMat, graph = "glasso", sampleSize = nrow(bfi),

tuning = 0.5, layout = "spring", title = "BIC", details = TRUE)

Compare centrality and clustering:
centralityPlot(list(BIC = BICgraph, EBIC = EBICgraph))
clusteringPlot(list(BIC = BICgraph, EBIC = EBICgraph))

Compute centrality and clustering:
centrality_auto(BICgraph)
clustcoef_auto(BICgraph)

Directed unweighted graphs
set.seed(1)
adj=matrix(sample(0:1,10^2,TRUE,prob=c(0.8,0.2)),nrow=10,ncol=10)
qgraph(adj)
title("Unweighted and directed graphs",line=2.5)

Save plot to nonsquare pdf file:

44 qgraph

qgraph(adj,filetype='pdf',height=5,width=10)

EXAMPLES FOR EDGES UNDER DIFFERENT ARGUMENTS
Create edgelist:
dat.3 <- matrix(c(1:15*2-1,1:15*2),,2)
dat.3 <- cbind(dat.3,round(seq(-0.7,0.7,length=15),1))

Create grid layout:
L.3 <- matrix(1:30,nrow=2)

Different esize:
qgraph(dat.3,layout=L.3,directed=FALSE,edge.labels=TRUE,esize=14)

Different esize, strongest edges omitted (note how 0.4 edge is now
just as wide as 0.7 edge in previous graph):
qgraph(dat.3[-c(1:3,13:15),],layout=L.3,nNodes=30,directed=FALSE,

edge.labels=TRUE,esize=14)

Different esize, with maximum:
qgraph(dat.3,layout=L.3,directed=FALSE,edge.labels=TRUE,esize=14,maximum=1)
title("maximum=1",line=2.5)

qgraph(dat.3[-c(1:3,13:15),],layout=L.3,nNodes=30,directed=FALSE,edge.labels=TRUE,
esize=14,maximum=1)

title("maximum=1",line=2.5)

Different minimum
qgraph(dat.3,layout=L.3,directed=FALSE,edge.labels=TRUE,esize=14,minimum=0.1)
title("minimum=0.1",line=2.5)

With cutoff score:
qgraph(dat.3,layout=L.3,directed=FALSE,edge.labels=TRUE,esize=14,cut=0.4)
title("cut=0.4",line=2.5)

With details:
qgraph(dat.3,layout=L.3,directed=FALSE,edge.labels=TRUE,esize=14,minimum=0.1,

maximum=1,cut=0.4,details=TRUE)
title("details=TRUE",line=2.5)

Trivial example of manually specifying edge color and widths:
E <- as.matrix(data.frame(from=rep(1:3,each=3),to=rep(1:3,3),width=1:9))
qgraph(E,mode="direct",edge.color=rainbow(9))

Input based on other R objects

pcalg
Example from pcalg vignette:
library("pcalg")
data(gmI)
suffStat <- list(C = cor(gmI$x), n = nrow(gmI$x))

qgraph.animate 45

pc.fit <- pc(suffStat, indepTest=gaussCItest,
p = ncol(gmI$x), alpha = 0.01)

qgraph(pc.fit)

glasso:
Using bfi dataset from psych:
library("psych")
data(bfi)
cor_bfi <- cor_auto(bfi[,1:25])

Run qgraph:
library("glasso")
bfi_glasso <- glasso(cor_bfi, 0.1)

Plot:
qgraph(bfi_glasso, layout = "spring")

End(Not run)

qgraph.animate Animate a growing network

Description

This function is meant to facilitate the creation of animations based on growing networks. Net-
works are created based on the Fruchterman Reingold algorithm, which is constraint by limiting the
maximum displacement of nodes that are already in the graph.

Usage

qgraph.animate(input, ind = NULL, ..., constraint = 10, growth = "order",
titles = NULL, sleep = 0, smooth = TRUE, plotGraphs = TRUE, progress = TRUE,
initLayout)

Arguments

input A weights matrix of the graph or a list of weigths matrices with different weights
of the same graph (see details). See qgraph. Edgelists are currently not sup-
ported.

ind An object that specifies which nodes ar included or excluded. See details.

... Additional arguments sent to qgraph

constraint The constraint factor of included nodes. See details. Defaults to 10 for an soft-
constrained animation. Set to Inf for a hard-constrained animation.

46 qgraph.animate

growth The way nodes are added by default. Set to "order" to include nodes in the order
they appear in the weigths matrix and to "degree" to include nodes based on
their degree (high degree first)

titles Optional vector with a title for each plot

sleep Optional value sent to Sys.sleep() for showing the animation in R

smooth Logical. If set to TRUE smoothing via loess is performed on the layout of all
frames.

plotGraphs Logical. If set to FALSE graphs are not plotted.

progress Logical. If set to TRUE progress bars are included.

initLayout An optional n by 2 matrix containing the initial placement of nodes in the ani-
mation.

Details

Let n be the number of nodes in total in the graph.

This function is designed to facilitate the production of animations by constraining the Fruchterman
Reingold algorithm. Several frames are plotted of (a subset of) the same graph. If a node was
already in the graph its maximum displacement per iteration of Fruchterman Reingold is equal to
the number of nodes times the inverse of the constraint argument (so by default n/10). The higher
this constraint value the stricter nodes stay in the same place between plots.

How many and which plots are made are defined by the ’input’ and ’ind’ arguments. There are two
ways to specify the ’input’ argument, either by speficying one weigths matrix or by specifying a
list of weights matrices. In the sections below is explained what both of these methods do and how
they are used.

This function, since it can be seen as an expression that makes several plots, works well in combi-
nation with the animation package for saving the animation to a wide variety of filetypes.

Value

Invisibly returns a list of all graphs.

Single weigths matrix

If ’input’ is a single weigths matrix then in each frame a subset of the same graph is plotted. This
is especially usefull for animating the growth of a network. Which nodes are in each frame is
determined by the ’ind’ argument.

If ’int’ is not specified an animation is created in which in each frame a single node is added. This
node is either in order of apearance in the weigths matrix or by its degree, which is determined with
the ’growth’ argument.

If ’ind’ is a logical vector of length n than the first frame will contain the nodes specified with this
vector and all other frames will grow in the same way as explained above (each step one node is
added).

If ’ind’ is a numeric vector of length n which contains all integers between 1 and n (a single entry
per node) then the first frame starts with only the node specified in the first element of the vector
and in frame i the ith element is added (each step one node is added).

qgraph.animate 47

If ’ind’ is a list with numeric vectors as elements containing integers between 1 and n then in frame
i the nodes from the ith element of the list will be added. Node numbers that occur multiple times
in the list are ignored (they are already added the first time).

Finally, if ’ind’ is a logical matrix with n columns and an arbitrary amount of rows, then in frame
i only the nodes that are TRUE in row i are included. This is the only way to specify removal of
nodes.

List of weigths matrices

The ’input’ argument can also be given a list of weigths matrices if all these matrices have the same
dimension (i.e.\ only the weights differ). If this is done than in frame i the ith weigths matrix is
used. This is especially usefull for animating the change in a graph.

In this case, the ’ind’ argument behaves differently. If this argument is not specified then in each
frame all nodes are included.

If ’ind’ is a logical vector of length n then only one plot is made with the nodes specified with that
vector, and only if the length of ’input’ is one.

Other methods woth in the same way as above. However, if the ’ind’ argument indicates a different
number of frames than the ’input’ argument the function will stop and give an error.

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

References

Sacha Epskamp, Angelique O. J. Cramer, Lourens J. Waldorp, Verena D. Schmittmann, Denny
Borsboom (2012). qgraph: Network Visualizations of Relationships in Psychometric Data. Journal
of Statistical Software, 48(4), 1-18. URL http://www.jstatsoft.org/v48/i04/.

See Also

qgraph

Examples

Not run:

For these examples, first generate a scale free network using preferential attachment:

Number of nodes:
n <- 100
Empty vector with Degrees:
Degs <- rep(0, n)
Empty Edgelist:
E <- matrix(NA, n - 1, 2)
Add and connect nodes 1 and 2:
E[1,] <- 1:2
Degs[1:2] <- 1
For each node, add it with probability proportional to degree:
for (i in 2:(n - 1))

48 qgraph.layout.fruchtermanreingold

{
E[i, 2] <- i + 1
con <- sample(1:i, 1, prob = Degs[1:i]/sum(Degs[1:i]),i)
Degs[c(con,i+1)] <- Degs[c(con,i+1)] + 1
E[i, 1] <- con
}

Because this is an edgelist we need a function to convert this to an adjacency matrix:
E2adj <- function(E,n)
{

adj <- matrix(0,n,n)
for (i in 1:nrow(E))
{

adj[E[i,1],E[i,2]] <- 1
}
adj <- adj + t(adj)
return(adj)

}

EXAMPLE 1: Animation of construction algorithm:
adjs <- lapply(1:nrow(E),function(i) E2adj(E[1:i,,drop=FALSE],n))
qgraph.animate(adjs,color="black",labels=FALSE,sleep=0.1, smooth = FALSE)
rm(adjs)

EXAMPLE 2: Add nodes by final degree:
adj <- E2adj(E,n)
qgraph.animate(E2adj(E,n),color="black",labels=FALSE,constraint=100,sleep=0.1)

EXAMPLE 3: Changing edge weights:
adjW <- adj*rnorm(n^2)
adjW <- (adjW + t(adjW))/2
adjs <- list(adjW)
for (i in 2:100)
{

adjW <- adj*rnorm(n^2)
adjW <- (adjW + t(adjW))/2
adjs[[i]] <- adjs[[i-1]] + adjW

}
qgraph.animate(adjs,color="black",labels=FALSE,constraint=100,sleep=0.1)

End(Not run)

qgraph.layout.fruchtermanreingold

qgraph.layout.fruchtermanreingold

qgraph.layout.fruchtermanreingold 49

Description

This is a wrapper for the function that returns the x and y coordinates of the graph based on the
Fruchterman Reingold algorithm (Fruchterman & Reingold, 1991), which was ported from the SNA
package (Butts, 2010). This function is used in qgraph and is not designed to be used separately.
See details for using constraints in this layout.

Usage

qgraph.layout.fruchtermanreingold(edgelist, weights=NULL, vcount=NULL,
niter=NULL, max.delta=NULL, area=NULL, cool.exp=NULL, repulse.rad=NULL,
init=NULL, groups=NULL, rotation=NULL, layout.control=0.5, constraints=NULL,
round = TRUE, digits = NULL)

Arguments

edgelist A matrix with on each row the nodes at the start and the node at the end of each
edge.

weights A vector containing the edge weights.

vcount The number of nodes.

niter Number of iterations, default is 500.

max.delta Maximum displacement, default is equal to the number of nodes.

area The area of the plot, default is the square of the number of nodes.

cool.exp Cooling exponent, default is 1.5.

repulse.rad Repulse radius, defaults to the cube of the number of nodes.

init Matrix with two columns and a row for each node containing the initial X and
Y positions.

groups See qgraph

rotation See qgraph

layout.control See qgraph

constraints A constraints matrix with two columns and a row for each node containing a NA
if the node is free or a fixed value for one of the coordinates.

round Logical indicating if the initial input should be rounded

digits Number of digits to round initial input and displacement in the algorithm to.
Defaults to 5. This helps prevent floating point disrepancies between different
operating systems.

Details

All arguments for this function can be passed from qgraph to this function by using the ’layout.par’
argument, which must be a list containing the arguments. This can be used to constrain the layout
in two ways:

50 qgraph.layout.fruchtermanreingold

Hard constraints

By using the ’constraints’ argument the X and Y positions of each node can be fixed to a certain
value. The ’constraint’ argument must be given a matrix with two columns and a row for each node.
An NA means that that coordinate for that node is free, and a value means it is fixed to that value.

Soft constraints

Soft constraining can be done by varying the ’max.delta’ argument. This can be a single number,
but also a vector containing the maximum displacement per step for each node. The default value
is the number of nodes, so by setting this to a lower value for some nodes the node won’t move so
much. Use this in combination with the ’init’ argument to make sure nodes don’t move too much
from their initial setup. This can be useful when adding a new node to an existing network and if
you don’t want the network to completely change.

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

References

Sacha Epskamp, Angelique O. J. Cramer, Lourens J. Waldorp, Verena D. Schmittmann, Denny
Borsboom (2012). qgraph: Network Visualizations of Relationships in Psychometric Data. Journal
of Statistical Software, 48(4), 1-18. URL http://www.jstatsoft.org/v48/i04/.

Carter T. Butts <buttsc@uci.edu> (2010). sna: Tools for Social Network Analysis. R package
version 2.2-0. http://CRAN.R-project.org/package=sna

Fruchterman, T. & Reingold, E. (1991). Graph drawing by force-directed placement. Software -
Pract. Exp. 21, 1129?1164.

See Also

qgraph

Examples

Not run:
This example makes a multipage PDF that contains images
Of a building network using soft constraints.

Each step one node is added with one edge. The max.delta
decreases the longer nodes are present in the network.

pdf("Soft Constraints.pdf",width=10,height=5)

adj=adjO=matrix(0,nrow=3,ncol=3)
adj[upper.tri(adj)]=1
Q=qgraph(adj,vsize=3,height=5,width=10,layout="spring",
esize=1,filetype='',directed=T)
cons=Q$layout
for (i in 1:20)
{

qgraph.loadings 51

x=nrow(adj)
adjN=matrix(0,nrow=x+1,ncol=x+1)
adjN[1:x,1:x]=adj
consN=matrix(NA,nrow=x+1,ncol=2)
consN[1:x,]=cons[1:x,]
layout.par=list(init=rbind(cons,c(0,0)),
max.delta=10/(x+1):1,area=10^2,repulse.rad=10^3)
y=sample(c(x,sample(1:(x),1)),1)
adjN[y,x+1]=1
Q=qgraph(adjN,Q,layout="spring",layout.par=layout.par)
cons=Q$layout
adj=adjN
}
dev.off()

End(Not run)

qgraph.loadings qgraph.loadings

Description

This function is a wrapper function for qgraph designed to visualize factor loadings.

Usage

qgraph.loadings(fact, ...)

Arguments

fact A matrix containing factor loadings (items per row, factors per column) or an
"loadings" object

... Additional optional arguments passed to qgraph and special arguments used in
this function (described below).

Additional optional arguments

layout If "default" a standard layout for factor models will be made. If this is "circle" the default
layout is circled (factors in the centre, items at the edge). No other layouts are currently
supported.

vsize A vector where the first value indicates the size of manifest variables and the second value
indicates the size of latent variables.

model "reflective" to have arrows go to manifest variables, "formative" to have arrows go to latent
variables or "none" (default) for no arrows

crossloadings Logical, if TRUE then for each manifest variable the strongest loading is omitted
(default to FALSE).

groups An optional list containing the measurement model, see qgraph

52 qgraphMixed

Fname When there is only one factor, this is it’s name. If there are more factors, the names in the
groups list are used only if the factors can be identified.

resid Values for the residuals

residSize Size of the residuals, defaults to 0.1

factorCors Correlation matrix of the factors

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

References

Sacha Epskamp, Angelique O. J. Cramer, Lourens J. Waldorp, Verena D. Schmittmann, Denny
Borsboom (2012). qgraph: Network Visualizations of Relationships in Psychometric Data. Journal
of Statistical Software, 48(4), 1-18. URL http://www.jstatsoft.org/v48/i04/.

See Also

qgraph

Examples

Not run:
Load big5 dataset:
data(big5)
data(big5groups)

big5efa <- factanal(big5,factors=5,rotation="promax",scores="regression")
big5loadings <- loadings(big5efa)
qgraph.loadings(big5loadings,groups=big5groups,minimum=0.2,
cut=0.4,vsize=c(1.5,15),borders=FALSE,vTrans=200,
model = "reflective", resid = big5efa$uniquenesses)

Tree layout:
qgraph.loadings(big5loadings,groups=big5groups,minimum=0.2,
cut=0.4,vsize=c(1.5,15),borders=FALSE,vTrans=200,
layout="tree",width=20,model = "reflective",
resid = big5efa$uniquenesses)

End(Not run)

qgraphMixed Plots a mixed graph with both directed and undirected edges.

Description

This function can be used to plot a network in which each node is connected by at most 3 edges;
one undirected edge and two directed edges.

smallworldIndex 53

Usage

qgraphMixed(undirected, directed, parallel = TRUE, parallelAngle = pi/6,
diagUndirected = FALSE, diagDirected = TRUE, ltyUndirected = 1, ltyDirected = 1,

curve = 1, ...)

Arguments

undirected The undirected network weights matrix.
directed The directed network weights matrix.
parallel Logical indicating if edges should be plotted parallel or curved.
parallelAngle See qgraph

diagUndirected Logical indicating if the diagonal of the undirected edges should be included.
diagDirected Logical indicating if the diagonal of the directed edges should be included.
ltyUndirected lty of undirected edges
ltyDirected lty of directed edges
curve Curvature of directed edges
... Arguments sent to qgraph

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

smallworldIndex Small-world index of unweighted graph

Description

Computes the small-world index of an unweighted graph. When the graph is weighted, weights are
removed and every nonzero edge weight is set to 1.

Usage

smallworldIndex(x)

Arguments

x A qgraph object.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. nature,
393(6684), 440-442.

54 smallworldness

smallworldness Compute the small-worldness index.

Description

Compute the small-worldness index (Humphries & Gurney, 2008) relying on the global transitity
of the network (Newman, 2003) and on its average shortest path length.

Usage

smallworldness(x, B = 1000, up = 0.995, lo = 0.005)

Arguments

x A graph. Can be a qgraph object object, an igraph object, an adjacency matrix,
a weight matrix and an edgelist, or a weighted edgelist.

B The number of random networks.

up The upper quantile.

lo the lower quantile.

Details

The function computes the transitivity of the target network and the average shortest path length.
Then it computes the average of the same indices on B random networks. The small-worldness index
is then computed as the transitivity (normalized by the random transitivity) over the average shortest
path length (normalized by the random average shortest path length). The lo and up quantiles of
the distribution of the random networks are also returned for both the transitivity and the average
shortest path length.

A network can be said "smallworld" if its smallworldness is higher than one (a stricter rule is
smallworldness>=3; Humphries & Gurney, 2008). To consider a network as "smallworld", it is
also suggested to inspect that the network has a transitivity substantially higher than comparable
random networks and that its average shortest path length is similar or higher (but not many times
higher) than that computed on random networks. Edge weights, signs and directions are ignored in
the computation of the indices.

Value

smallworldness the "small-worldness" index proposed by Humphries & Gurney (2008)

trans_target the global transitivity of the target network (Newman, 2003)
averagelength_target

the average shortest path length in the target network

trans_rnd_M the average transitivity in the B random networks

trans_rnd_lo the lo quantile of the transitivity in the B random networks

trans_rnd_up the up quantile of the transitivity in the B random networks

smallworldness 55

averagelength_rnd_M

the average shortest path length in the B random networks

averagelength_rnd_lo

the lo quantile of the shortest path length in the B random networks

averagelength_rnd_up

the up quantile of the shortest path length in the B random networks

Note

If a directed network is given as input, an edge between every two nodes i and j is considered present
if there is an arrow either from i to j or from j to i or both.

Author(s)

Giulio Costantini (giulio.costantini@unimib.it), Sacha Epskamp (mail@sachaepskamp.com)

References

Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mottus, R., Waldorp, L., Cramer, A. O.
J., State of the aRt personality research: A tutorial on network analysis of personality data in R.
Manuscript submitted for publication.

Humphries, M. D., & Gurney, K. (2008). Network "small-world-ness": a quantitative method for
determining canonical network equivalence. PLoS One, 3(4), e0002051.

Newman, M. E. J. (2003). The structure and function of complex networks*. SIAM Review, 45(3),
167–256.

Examples

set.seed(1)
a regular lattice. Even if the small-worldness is higher than three, the average path length is
much higher than that of random networks.
regnet<-igraph::watts.strogatz.game(dim=1, size=1000, nei=10, p=0, loops=FALSE, multiple=FALSE)
smallworldness(regnet, B=10)

Not run:
a small-world network: the transitivity is much higher than random, the average path length is
close to that of random networks
swnet<-igraph::watts.strogatz.game(dim=1, size=1000, nei=10, p=.1, loops=FALSE, multiple=FALSE)
smallworldness(swnet, B=10)

a pseudorandom network: both the average path length and the transitivity are similar to random
networks.
rndnet<-igraph::watts.strogatz.game(dim=1, size=1000, nei=10, p=1, loops=FALSE, multiple=FALSE)
smallworldness(rndnet, B=10)

End(Not run)

56 VARglm

summary.qgraph Summary method for "qgraph"

Description

This function creates a brief summary based on a "qgraph" object.

Usage

S3 method for class 'qgraph'
summary(object, ...)

Arguments

object A "qgraph" object

... These arguments are not used

Author(s)

Sacha Epskamp (mail@sachaepskamp.com)

See Also

qgraph

VARglm Computes a vector autoregressive lag-1 model using GLM

Description

This function computes a VAR model using glm.

Usage

VARglm(x, family, vars, adjacency, icfun = BIC, ...)

Arguments

x A data frame

family The family to be used. Defaults to gaussian if data is continuous or binomial
if data is binary

vars Vector of variables to predict. If missing all variables are predicted.

adjacency Adjacency matrix. If missing full network is estimated

icfun Information criterium function to be included in the output

... Arguments used in the icfun

wi2net 57

Value

A list containing:

graph The estimated graph

IC The information criterium

Author(s)

Sacha Epskamp <mail@sachaepskamp.com

wi2net Converts precision matrix to partial correlation matrix

Description

A small function that converts a precision matrix (inverse of covariance matrix) to a partial corre-
latin matrix. This can be done by standardizing the precision matrix and changing the sign of the
offdiagonal entries. Many methods exist for obtaining a precision matrix (Such as the glasso pack-
age; Friedman, Hastie and Tibshirani, 2011) but the partial correlation matrix is easier interpretable
and better usuable in qgraph.

Usage

wi2net(x)

Arguments

x A precision matrix

Value

A partial correlation matrix

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Jerome Friedman, Trevor Hastie and Rob Tibshirani (2011). glasso: Graphical lasso-estimation of
Gaussian graphical models. R package version 1.7. http://CRAN.R-project.org/package=glasso

Index

∗ Correlations
qgraph, 28

∗ Graphs
qgraph, 28

∗ black
makeBW, 23

∗ centrality
centrality_auto, 8

∗ clustering
clustcoef_auto, 10

∗ graphs
centrality, 5
centrality_auto, 8

∗ qgraph
qgraph, 28

∗ signed
clustcoef_auto, 10

∗ smallworld
smallworldness, 54

∗ transitivity
smallworldness, 54

∗ weighted
clustcoef_auto, 10

∗ white
makeBW, 23

as.igraph.qgraph, 2
averageLayout, 3

big5, 4
big5groups, 4

centrality, 5, 9
centrality and clustering plots, 7
centrality_auto, 8, 12
centralityPlot (centrality and

clustering plots), 7
centralityTable (centrality and

clustering plots), 7
clustcoef_auto, 10

clusteringPlot (centrality and
clustering plots), 7

clusteringTable (centrality and
clustering plots), 7

clustOnnela (clustcoef_auto), 10
clustWS (clustcoef_auto), 10
clustZhang (clustcoef_auto), 10
cor_auto, 12, 42
corr.p, 30
cov2cor, 30

EBICglasso, 14, 21, 22, 30

FDRnetwork, 16, 30
fdrtool, 16, 30
flow, 18

getWmat, 7, 19
ggmFit, 20, 22
ggmModSelect, 21
glasso, 14, 20, 22

huge.npn, 13

igraph, 8, 11

lavCor, 12, 13
loess, 46

makeBW, 23
mat2vec, 24
mutualInformation, 25

nearPD, 13, 30

pathways, 25
plot.qgraph, 26
print.qgraph, 27

qgraph, 2, 3, 5, 6, 8, 9, 18, 25–27, 28, 41, 45,
47, 49–53, 56

58

INDEX 59

qgraph.animate, 42, 45
qgraph.layout.fruchtermanreingold, 35,

40, 48
qgraph.loadings, 42, 51
qgraphMixed, 52

rainbow, 40
rainbow_hcl, 32

smallworldIndex, 53
smallworldness, 54
subset, 12
summary.qgraph, 56

transitivity, 11

upper.tri, 11

VARglm, 56

wi2net, 15, 57

	as.igraph.qgraph
	averageLayout
	big5
	big5groups
	centrality
	centrality and clustering plots
	centrality_auto
	clustcoef_auto
	cor_auto
	EBICglasso
	FDRnetwork
	flow
	getWmat
	ggmFit
	ggmModSelect
	makeBW
	mat2vec
	mutualInformation
	pathways
	plot.qgraph
	print.qgraph
	qgraph
	qgraph.animate
	qgraph.layout.fruchtermanreingold
	qgraph.loadings
	qgraphMixed
	smallworldIndex
	smallworldness
	summary.qgraph
	VARglm
	wi2net
	Index

