## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE,fig.width=6, fig.height=4 ) ## ----simulation, eval=FALSE--------------------------------------------------- # # Running the simulation with specific parameters # a <- rgm:::sim.rgm(p=27, B=5, n=146, mcmc_iter = 100, seed=1234) ## ----run-experiment, eval=FALSE----------------------------------------------- # # # Fitting the model # res <- rgm:::rgm(a$data, X=a$X, iter=10000) # ## ----load, echo=FALSE, eval=FALSE--------------------------------------------- # load("SimRes_p87.RData") # #res = smaller_res ## ----plot-sample-theta, echo=FALSE, warning=FALSE, eval=FALSE----------------- # # Loading the RGM package # suppressPackageStartupMessages(library(rgm)) # # suppressPackageStartupMessages(library(ggplot2)) # # suppressPackageStartupMessages(library(pROC)) # # suppressPackageStartupMessages(library(gplots)) # # suppressPackageStartupMessages(library(grid)) # # suppressPackageStartupMessages(library(gridExtra)) # # suppressPackageStartupMessages(library(dendextend)) # # ## ----eval=FALSE--------------------------------------------------------------- # # ps = rgm:::post_processing_rgm(simulated_data = a,results = res) # # ## ----beta_convergence, warning=FALSE, eval=FALSE------------------------------ # ps$beta_convergence ## ----rgm_recovery, eval=FALSE------------------------------------------------- # # ps$rgm_recovery ## ----roc_plot, eval=FALSE----------------------------------------------------- # ps$roc_plot ## ----estimation_of_alpha, eval=FALSE------------------------------------------ # ps$estimation_of_alpha ## ----posterior_distribution, eval=FALSE--------------------------------------- # ps$posterior_distribution ## ----edge_prob, eval=FALSE---------------------------------------------------- # ps$edge_prob