## ----echo = FALSE, message = FALSE-------------------------------------------- library("rprime") library("knitr") opts_chunk$set( comment = "#>", error = FALSE, tidy = FALSE, collapse = TRUE) options(str = strOptions(vec.len = 2)) ## ----eval = FALSE------------------------------------------------------------- # install.packages("rprime") ## ----------------------------------------------------------------------------- library("rprime") # Read in an Eprime text file experiment_lines <- read_eprime("data/SAILS/SAILS_001X00XS1.txt") # Extract and parse the log-frames from the file experiment_data <- FrameList(experiment_lines) ## ----------------------------------------------------------------------------- # There are six different kinds of frames in this file preview_levels(experiment_data) ## ----------------------------------------------------------------------------- preview_frames(experiment_data) ## ----------------------------------------------------------------------------- # Filter (out) by depth of nesting not_level_1 <- drop_levels(experiment_data, 1) preview_levels(not_level_1) # Filter (in) by depth of nesting just_level_3 <- keep_levels(experiment_data, 3) preview_levels(just_level_3) ## ----------------------------------------------------------------------------- # Filter (out) by attribute values no_header <- filter_out(experiment_data, "Running", values = "Header") preview_levels(no_header) # Filter (in) by attribute values not_practice <- filter_in(experiment_data, "Running", "TrialLists") preview_levels(not_practice) # Drill down further into the trials by filtering again sue_trials <- filter_in(not_practice, "Module", "SUE") preview_eprime(sue_trials) ## ----------------------------------------------------------------------------- # Export to dataframe sue_trials_df <- to_data_frame(sue_trials) str(sue_trials_df) # Don't need every column columns_to_keep <- c("Eprime.Basename", "Module", "Sample", "Correct", "Response") sue_trials_df <- sue_trials_df[columns_to_keep] head(sue_trials_df) ## ----------------------------------------------------------------------------- # Right now the sample numbers are stored as character values str(sue_trials_df) library("readr") sue_trials_df <- type_convert(sue_trials_df) # Now, they are stored as integers... str(sue_trials_df)