## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- setup------------------------------------------------------------------- # Load statespacer library(statespacer) # Load the dataset library(datasets) y <- matrix(Nile) ## ----------------------------------------------------------------------------- fit <- statespacer(y = y, local_level_ind = TRUE, initial = 0.5*log(var(y)), verbose = TRUE) ## ----------------------------------------------------------------------------- c(fit$system_matrices$H$H, fit$system_matrices$Q$level) ## ---- fig.height = 4.5, fig.width = 7----------------------------------------- plot(1871:1970, fit$function_call$y, type = 'p', ylim = c(500, 1400), xlab = NA, ylab = NA, sub = "The filtered level with 90% confidence intervals, and the observed data points" ) lines(1871:1970, fit$filtered$level, type = 'l') lines(1871:1970, fit$filtered$level + qnorm(0.95) * sqrt(fit$filtered$P[1,1,]), type = 'l', col = 'gray' ) lines(1871:1970, fit$filtered$level - qnorm(0.95) * sqrt(fit$filtered$P[1,1,]), type = 'l', col = 'gray' ) ## ---- fig.height = 4.5, fig.width = 7----------------------------------------- plot(1871:1970, fit$function_call$y, type = 'p', ylim = c(500, 1400), xlab = NA, ylab = NA, sub = "The smoothed level with 90% confidence intervals, and the observed data points") lines(1871:1970, fit$smoothed$level, type = 'l') lines(1871:1970, fit$smoothed$level + qnorm(0.95) * sqrt(fit$smoothed$V[1,1,]), type = 'l', col = 'gray' ) lines(1871:1970, fit$smoothed$level - qnorm(0.95) * sqrt(fit$smoothed$V[1,1,]), type = 'l', col = 'gray' )