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Smoothing splines penalized regression

Given observations (our data), (xi, Yi) (i = 1, . . . , n), a quite general model for such data is

Yi = m(xi) + εi, (1)

where ε1, . . . , εn i.i.d. with E[εi] = 0 and m : R → R is an “arbitrary” function. The function m(·)
is called the nonparametric regression function and it satisfies m(x) = E[Y |x] and should fulfill
some kind of smoothness conditions.

One fruitful approach to estimate such a “smooth” function m() is via so called “smoothing splines”
(or their generalization, “penalized regression splines”).

Penalized sum of squares

Consider the following problem: among all functions m with continuous second derivative, find the
one which minimizes the penalized residual sum of squares

Lλ(m) :=

n∑

i=1

(Yi −m(xi))
2 + λ

∫
m′′(t)2 dt, (2)

where λ > 0 is a smoothing parameter. The first term measures closeness to the data and the
second term penalizes curvature (“roughness”) of the function. The two extreme cases are:

• λ = 0: As any function m interpolating the data gives L0(m) = 0, hence (2) does require
λ > 0. In the limit, λ → 0, however, m̂λ → the well defined interpolating natural cubic
spline). 1

• λ = ∞: any linear function fulfills m′′(x) ≡ 0, and the minimizer of (2) is the least squares
regression line.

The smoothing spline solution

Remarkably, the minimizer of (2) is finite-dimensional, although the criterion to be minimized is
over the infinite-dimensional Sobolev space of functions for which the integral

∫
m′′2 is finite.

Let us assume for now that the data has x values sorted and unique,

x1 < x2 < . . . < xn.

1We will see that taking the limit λ → 0 is problematic directly numerically and in practice you should rather

use spline() for spline interpolation instead of smoothing.
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The solution m̂λ(·) (i.e., the unique minimizer of (2)) is a natural cubic spline with knots
t1, t2, . . . , tnk

which are the sorted unique values of {x1, x2, . . . , xn}. That is, m̂ is a piecewise

cubic polynomial in each interval [tj , tj+1) such that m̂
(k)
λ (k = 0, 1, 2) is continuous everywhere

and has “natural” boundary conditions m̂′′(t1) = m̂′′(tnk
) = 0. For the nk − 1 cubic polynomials,

we’d need (nk − 1) · 4 coefficients. Since there are (nk − 2) · 3 continuity conditions (at every “inner
knot”, j = 2, . . . , nk−1) plus the 2 “natural” conditions, this leaves 4(nk−1)− [3(nk−2)+2] = nk

free parameters (the βj ’s below). Knowing that the solution is a cubic spline, it can be obtained
by linear algebra. We represent

mλ(x) =

nk∑

j=1

βjBj(x), (3)

where the Bj(·)’s are basis functions for natural splines. The unknown coefficients can then be
estimated from least squares in linear regression under side constraints. The criterion in (2) for
m̂λ as in (3) then becomes

L̃λ(β) := Lλ(m) = ∥Y −Xβ∥
2
+ λβ⊺Ωβ,

respectively, when not all weights wi are 1,

L̃λ(β) = (Y −Xβ)⊺W (Y −Xβ) + λβ⊺Ωβ, (4)

where the design matrix X has jth column (Bj(x1), . . . , Bj(xn))
⊺, i.e.,

Xij = Bj(xi) for i = 1, . . . , n,

W = diag(w), i.e., Wij = 1[i=j] · wi, and

Ωjk =

∫
B′′

j (t)B
′′

k (t) dt, for j, k = 1, . . . , nk.

The solution, β̂ = argminβ L̃λ(β) can then be derived by setting the gradient ∂
∂β

L̃λ(β) to zero:

0 = −2(X⊺WY)⊺β + 2(X⊺WX + λΩ)β, and hence

β̂ = (X⊺WX + λΩ)−1X⊺WY. (5)

When B-splines are used as basis function Bj , both X and Ω are banded matrices, i.e., zero apart
from a “band”, i.e., few central diagonals. As,

m̂λ(x) =

nk∑

j=1

β̂jBj(x),

the fitted values are Ŷ = Xβ̂, where Ŷi = m̂λ(xi) (i = 1, . . . , n), and

Ŷ = Xβ̂ = SλY, where Sλ = X(X⊺WX + λΩ)−1X⊺W. (6)

The hat matrix Sλ = Sλ
⊺ is symmetric which implies elegant mathematical properties (real-valued

eigen-decomposition).
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