PP.test {stats}R Documentation

Phillips-Perron Test for Unit Roots

Description

Computes the Phillips-Perron test for the null hypothesis that x has a unit root against a stationary alternative.

Usage

PP.test(x, lshort = TRUE)

Arguments

x

a numeric vector or univariate time series.

lshort

a logical indicating whether the short or long version of the truncation lag parameter is used.

Details

The general regression equation which incorporates a constant and a linear trend is used and the corrected t-statistic for a first order autoregressive coefficient equals one is computed. To estimate sigma^2 the Newey-West estimator is used. If lshort is TRUE, then the truncation lag parameter is set to trunc(4*(n/100)^0.25), otherwise trunc(12*(n/100)^0.25) is used. The p-values are interpolated from Table 4.2, page 103 of ⁠Banerjee, Dolado, Galbraith, and Hendry (1993).

Missing values are not handled.

Value

A list with class "htest" containing the following components:

statistic

the value of the test statistic.

parameter

the truncation lag parameter.

p.value

the p-value of the test.

method

a character string indicating what type of test was performed.

data.name

a character string giving the name of the data.

Author(s)

A. Trapletti

References

Banerjee A, Dolado JJ, Galbraith JW, Hendry D (1993). Co-integration, Error Correction, and the Econometric Analysis of Non-Stationary Data. Oxford University Press. ISBN 9780198288107. doi:10.1093/0198288107.001.0001.

Perron P (1988). “Trends and Random Walks in Macroeconomic Time Series.” Journal of Economic Dynamics and Control, 12(2–3), 297–332. doi:10.1016/0165-1889(88)90043-7.

Examples

x <- rnorm(1000)
PP.test(x)
y <- cumsum(x) # has unit root
PP.test(y)

[Package stats version 4.6.0 Index]