| surf.gls {spatial} | R Documentation |
Fits a Trend Surface by Generalized Least-squares
Description
Fits a trend surface by generalized least-squares.
Usage
surf.gls(np, covmod, x, y, z, nx = 1000, ...)
Arguments
np |
degree of polynomial surface |
covmod |
function to evaluate covariance or correlation function |
x |
x coordinates or a data frame with columns |
y |
y coordinates |
z |
z coordinates. Will supersede |
nx |
Number of bins for table of the covariance. Increasing adds accuracy, and increases size of the object. |
... |
parameters for |
Value
list with components
beta |
the coefficients |
x |
|
y |
|
z |
and others for internal use only. |
References
Ripley, B. D. (1981) Spatial Statistics. Wiley.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See Also
trmat, surf.ls, prmat, semat, expcov, gaucov, sphercov
Examples
library(MASS) # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot(sesurf, type = "n")
contour(sesurf, levels = c(22, 25), add = TRUE)
[Package spatial version 7.3-18 Index]