| CHMfactor-class {Matrix} | R Documentation | 
Sparse Cholesky Factorizations
Description
CHMfactor is the virtual class of sparse Cholesky
factorizations of n \times n real, symmetric
matrices A, having the general form
P_1 A P_1' = L_1 D L_1' \overset{D_{jj} \ge 0}{=} L L'
or (equivalently)
A = P_1' L_1 D L_1' P_1 \overset{D_{jj} \ge 0}{=} P_1' L L' P_1
where
P_1 is a permutation matrix,
L_1 is a unit lower triangular matrix,
D is a diagonal matrix, and
L = L_1 \sqrt{D}.
The second equalities hold only for positive semidefinite A,
for which the diagonal entries of D are non-negative
and \sqrt{D} is well-defined.
The implementation of class CHMfactor is based on
CHOLMOD's C-level cholmod_factor_struct.  Virtual
subclasses CHMsimpl and CHMsuper separate
the simplicial and supernodal variants.  These have nonvirtual
subclasses [dn]CHMsimpl and [dn]CHMsuper,
where prefix ‘d’ and prefix ‘n’ are reserved
for numeric and symbolic factorizations, respectively.
Usage
isLDL(x)
Arguments
| x | an object inheriting from virtual class  | 
Value
isLDL(x) returns TRUE or FALSE:
TRUE if x stores the lower triangular entries
of L_1-I+D,
FALSE if x stores the lower triangular entries
of L.
Slots
Of CHMfactor:
- Dim,- Dimnames
- inherited from virtual class - MatrixFactorization.
- colcount
- an integer vector of length - Dim[1]giving an estimate of the number of nonzero entries in each column of the lower triangular Cholesky factor. If symbolic analysis was performed prior to factorization, then the estimate is exact.
- perm
- a 0-based integer vector of length - Dim[1]specifying the permutation applied to the rows and columns of the factorized matrix.- permof length 0 is valid and equivalent to the identity permutation, implying no pivoting.
- type
- an integer vector of length 6 specifying details of the factorization. The elements correspond to members - ordering,- is_ll,- is_super,- is_monotonic,- maxcsize, and- maxesizeof the original- cholmod_factor_struct. Simplicial and supernodal factorizations are distinguished by- is_super. Simplicial factorizations do not use- maxcsizeor- maxesize. Supernodal factorizations do not use- is_llor- is_monotonic.
Of CHMsimpl (all unused by nCHMsimpl): 
- nz
- an integer vector of length - Dim[1]giving the number of nonzero entries in each column of the lower triangular Cholesky factor. There is at least one nonzero entry in each column, because the diagonal elements of the factor are stored explicitly.
- p
- an integer vector of length - Dim[1]+1. Row indices of nonzero entries in column- jof the lower triangular Cholesky factor are obtained as- i[p[j]+seq_len(nz[j])]+1.
- i
- an integer vector of length greater than or equal to - sum(nz)containing the row indices of nonzero entries in the lower triangular Cholesky factor. These are grouped by column and sorted within columns, but the columns themselves need not be ordered monotonically. Columns may be overallocated, i.e., the number of elements of- ireserved for column- jmay exceed- nz[j].
- prv,- nxt
- integer vectors of length - Dim[1]+2indicating the order in which the columns of the lower triangular Cholesky factor are stored in- iand- x. Starting from- j <- Dim[1]+2, the recursion- j <- nxt[j+1]+1traverses the columns in forward order and terminates when- nxt[j+1] = -1. Starting from- j <- Dim[1]+1, the recursion- j <- prv[j+1]+1traverses the columns in backward order and terminates when- prv[j+1] = -1.
Of dCHMsimpl:
- x
- a numeric vector parallel to - icontaining the corresponding nonzero entries of the lower triangular Cholesky factor- Lor (if and only if- type[2]is 0) of the lower triangular matrix- L_1-I+D.
Of CHMsuper:
- super,- pi,- px
- integer vectors of length - nsuper+1, where- nsuperis the number of supernodes.- super[j]+1is the index of the leftmost column of supernode- j. The row indices of supernode- jare obtained as- s[pi[j]+seq_len(pi[j+1]-pi[j])]+1. The numeric entries of supernode- jare obtained as- x[px[j]+seq_len(px[j+1]-px[j])]+1(if slot- xis available).
- s
- an integer vector of length greater than or equal to - Dim[1]containing the row indices of the supernodes.- smay contain duplicates, but not within a supernode, where the row indices must be increasing.
Of dCHMsuper:
- x
- a numeric vector of length less than or equal to - prod(Dim)containing the numeric entries of the supernodes.
Extends
Class MatrixFactorization, directly.
Instantiation
Objects can be generated directly by calls of the form
new("dCHMsimpl", ...), etc., but dCHMsimpl and
dCHMsuper are more typically obtained as the value of
Cholesky(x, ...) for x inheriting from
sparseMatrix
(often dsCMatrix).
There is currently no API outside of calls to new
for generating nCHMsimpl and nCHMsuper.  These
classes are vestigial and may be formally deprecated in a future
version of Matrix.
Methods
- coerce
- signature(from = "CHMsimpl", to = "dtCMatrix"): returns a- dtCMatrixrepresenting the lower triangular Cholesky factor- Lor the lower triangular matrix- L_1-I+D, the latter if and only if- from@type[2]is 0.
- coerce
- signature(from = "CHMsuper", to = "dgCMatrix"): returns a- dgCMatrixrepresenting the lower triangular Cholesky factor- L. Note that, for supernodes spanning two or more columns, the supernodal algorithm by design stores non-structural zeros above the main diagonal, hence- dgCMatrixis indeed more appropriate than- dtCMatrixas a coercion target.
- determinant
- signature(from = "CHMfactor", logarithm = "logical"): behaves according to an optional argument- sqrt. If- sqrt = FALSE, then this method computes the determinant of the factorized matrix- Aor its logarithm. If- sqrt = TRUE, then this method computes the determinant of the factor- L = L_1 sqrt(D)or its logarithm, giving- NaNfor the modulus when- Dhas negative diagonal elements. For backwards compatibility, the default value of- sqrtis- TRUE, but that can be expected change in a future version of Matrix, hence defensive code will always set- sqrt(to- TRUE, if the code must remain backwards compatible with Matrix- < 1.6-0). Calls to this method not setting- sqrtmay warn about the pending change. The warnings can be disabled with- options(Matrix.warnSqrtDefault = 0).
- diag
- signature(x = "CHMfactor"): returns a numeric vector of length- ncontaining the diagonal elements of- D, which (if they are all non-negative) are the squared diagonal elements of- L.
- expand
- signature(x = "CHMfactor"): see- expand-methods.
- expand1
- signature(x = "CHMsimpl"): see- expand1-methods.
- expand1
- signature(x = "CHMsuper"): see- expand1-methods.
- expand2
- signature(x = "CHMsimpl"): see- expand2-methods.
- expand2
- signature(x = "CHMsuper"): see- expand2-methods.
- image
- signature(x = "CHMfactor"): see- image-methods.
- nnzero
- signature(x = "CHMfactor"): see- nnzero-methods.
- solve
- signature(a = "CHMfactor", b = .): see- solve-methods.
- update
- signature(object = "CHMfactor"): returns a copy of- objectwith the same nonzero pattern but with numeric entries updated according to additional arguments- parentand- mult, where- parentis (coercible to) a- dsCMatrixor a- dgCMatrixand- multis a numeric vector of positive length.
 The numeric entries are updated with those of the Cholesky factor of- F(parent) + mult[1] * I, i.e.,- F(parent)plus- mult[1]times the identity matrix, where- F = identityfor symmetric- parentand- F = tcrossprodfor other- parent. The nonzero pattern of- F(parent)must match that of- Sif- object = Cholesky(S, ...).
- updown
- signature(update = ., C = ., object = "CHMfactor"): see- updown-methods.
References
The CHOLMOD source code; see
https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’
defining cholmod_factor_struct.
Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995
Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905. doi:10.1145/1024074.1024081
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class dsCMatrix.
Generic functions Cholesky, updown,
expand1 and expand2.
Examples
showClass("dCHMsimpl")
showClass("dCHMsuper")
set.seed(2)
m <- 1000L
n <- 200L
M <- rsparsematrix(m, n, 0.01)
A <- crossprod(M)
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)
(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL =  TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
    identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
    identical(names(E.ch.A), c("P1.", "L" ,      "L." , "P1"))
    identical(e.ch.A[["P1"]],
              new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
                  margin = 2L, perm = invertPerm(ch.A@perm, 0L, 1L)))
    identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
    identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
    identical(E.ch.A[["L." ]], t(E.ch.A[["L" ]]))
    identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
    all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
    ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
    ae1(A, with(E.ch.A, P1. %*% L  %*%         L.  %*% P1))
    ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(e.ch.A, L1 %*% D %*% L1.))
    ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(E.ch.A, L  %*%         L. ))
})
## Factorization handled as factorized matrix
## (in some cases only optionally, depending on arguments)
b <- rnorm(n)
stopifnot(identical(det(A), det(ch.A, sqrt = FALSE)),
          identical(solve(A, b), solve(ch.A, b, system = "A")))
u1 <- update(ch.A,   A , mult = sqrt(2))
u2 <- update(ch.A, t(M), mult = sqrt(2)) # updating with crossprod(M), not M
stopifnot(all.equal(u1, u2, tolerance = 1e-14))