Using Irizarry et al. (2003) (Biostatistics 4: 249-264), we fit the following model to the normalized, background corrected data:

$$Y_{ijn} = \mu_{in} + \alpha_{jn} + e_{ijr}$$

where Y_{ijn} is the 'raw' expression data for the i^{th} array (i = 1, ., .I), j^{th} probe and n^{th} gene. RMA or expresso can be used to fit the model. Either of these approaches yields an estimate of the expression of the n^{th} gene on the i^{th} array, $i.e., \hat{\mu}_{in}$.If I want to compute a test statistic based on the $\hat{\mu}_{in}$ I could construct a summary of the $\hat{\mu}'_{in}s$,say $\hat{\mu}_{.n}$, the mean of the $\hat{\mu}'_{in}s$ for the n^{th} gene. I could normalize the data using the sample standard deviation for the n^{th} gene

$$s_n = \sqrt{\frac{1}{(I-1)}\sum \left(\widehat{\mu}_{in} - \widehat{\mu}_{.n}\right)^2}$$

Here s_n^2 estimates the variance of the individual expression estimates, i.e. $Var(\hat{\mu}_{in})$, so that the variance estimate of $\hat{\mu}_{.n}$ is

$$Var\left(\widehat{\mu}_{n}\right) = s_{n}^{2}/I$$

 s_n^2/I . Alternatively I could use an estimate of the standard error based on the fitted model. However, I'm not sure now what se.exprs, used after expresso, gives me.