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1 Results

Consider drawing a sample of size n from an urn containing K white and N − K black
balls. The number of white balls in the sample has a hypergeometric distribution denoted
Q(n;K,N) if we sample without replacement and a binomial distribution denoted P (n; p)
with p = K/N if we sample with replacement. Since it is easier to work with the binomial
distribution than with the hypergeometric, we would like to replace latter by the former.
It is straightforward to show that for fixed n

‖Q(n;K,N)− P (n;K/N)‖ −→ 0 (N →∞, K/N → p)

in any norm. Here we are interested in obtaining explicit bounds for the total variation
norm

‖Q(n;K,N)− P (n; p)‖TV = sup
A⊆{0,1,...n}

|Q(n;K,N)(A)− P (n; p)(A)| .

Using elementary arguments, Freedman (1977) gave tight bounds from above and below
for the total variation norm between sampling with and without replacement. His results
show that this norm is small iff n2

N is small. But in many typical situations from survey

sampling, n2

N is not small. On the other hand, we are interested only in events involving
the number of white balls and so the difference can be substantially smaller.

Using Stein’s method (see Barbour et al., 1992), Ehm (1991) obtained the following in-
equalities
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n− 1

N − 1
≤ ‖Q(n;K,N)− P (n; p)‖TV ≤

n− 1

N − 1

provided npq ≥ 1 (q = 1−p). This result does not seem to be widely known. For instance
it is not quoted in Johnson et al. (1992) who list various approximations and bounds for
the hypergeometric distribution in Section 6.5. Ehm’s (1991) result is based on a result of
Vatutin and Mikhailov (1982, Lemma 1) which says that a hypergeometric random variable
can be represented as a sum of independent, but not identically distributed indicators.

The purpose of this note is to show that we can obtain Ehm’s (1991) result without
using the representation of Vatutin and Mikhailov (1982). We work with the obvious
representation by a sum of identically distibuted, but dependent indicators and use the
coupling method (see Barbour et al., 1992, Chapter 2). In this way the proofs become a
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little simpler and we can slightly improve the lower bound. After completing this work,
we became aware of the paper by Soon (1996) where the same coupling has been used.
But he does not give a lower bound.

Theorem If npq ≥ 1
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n− 1

N − 1
≤ ‖Q(n;K,N)− P (n; p)‖TV ≤

n− 1

N − 1
.

Unfortunately the gap between the two bounds is still too large to decide for instance
whether the rule of thumb n

N < 0.1 (see e.g. Johnson et al. (1992), p. 257) is justified or
not. We have calculated the ratio

N − 1

n− 1
‖Q(n;K,N)− P (n; p)‖TV

for (n,N) = (1000, 10′000), (1000, 5000), (500, 5000) and p = 0.1, 0.2, 0.3, 0.4, 0.5 with
the S-Plus software (Becker, Chambers, Wilks, 1988). In order to check the software we
also did the calculations with R (Ihaka and Gentleman, 1996). The results were the same
and this ratio is practically constant and equal to 0.26 (it varied between 0.255 and 0.27).
Even in the extreme case N = 2500, n = 50, p = 0.02 the ratio is still 0.28. The following
result brings the theoretical lower bound closer to the empirical bound at least in the limit
when n is large.

Theorem If n→∞, N →∞ and K/N → p ∈ (0, 1), then

lim inf
N − 1

n− 1
‖Q(n;K,N)− P (n; p)‖TV ≥ 0.115.

2 Proofs

We begin by introducing some notation. Let f denote a function defined on {0, 1, . . . n}.
We denote the expectation of f with respect to Q(n;K,N) by Q(n;K,N)[f ] (and similarly
for expectations with respect to P (n; p)). Furthermore we introduce the following two
operators

∆f(k) = f(k + 1)− f(k) (k = 0, 1, . . . n− 1),

T f(k) = p(n− k)f(k)− qkf(k − 1) (k = 0, 1, . . . n).

Note that our definition of ∆f differs from the one used by Ehm (1991) and that we do
not need to define f at k = −1 to obtain Tf(0). The following Lemma is the key

Lemma For any f

P (n; p)[Tf ] = 0,

Q(n;K,N)[Tf ] = Q(n− 2;K − 1, N − 2)[∆f ]
n− 1

N − 1
npq.

Proof of Lemma 1: The first equality follows from the well known recursion

q(k + 1)P (n; p)[k + 1] = p(n− k)P (n; p)[k].
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For the second equality, define the random variables

Xi =

{
1 if ith ball is white
0 otherwise

for i = 1, . . . n and let

S =
n∑

i=1

Xi, Si =
∑
j 6=i

Xj .

Then

Q(n;K,N)[Tf ] = E[p(n− S)f(S)− qSf(S − 1)]

= p
n∑

i=1

E[(1−Xi)f(Si +Xi)]− q
n∑

i=1

E[Xif(Si +Xi − 1)]

= pq
n∑

i=1

(E[f(Si)|Xi = 0]− E[f(Si)|Xi = 1]).

But conditional on Xi = 0, the distribution of Si is Q(n − 1;K,N − 1), and conditional
on Xi = 1, it is Q(n − 1;K − 1, N − 1). Hence we can realize these two conditional
distributions simultaneously on the same probability space as follows: Draw a sample of
size n−1 without replacement from an urn with K−1 white, one grey and N−K−1 black
balls. Then the number of white balls in the sample is Q(n− 1;K − 1, N − 1)-distributed
and the number of white and grey balls is Q(n − 1;K,N − 1)-distributed. Denoting the
event that the sample contains exactly k white and the grey ball by Bk, we thus obtain

Q(n;K,N)[Tf ] = npq

n−2∑
k=0

(f(k + 1)− f(k))P [Bk]

= npq
n−2∑
k=0

∆f(k)

(
K − 1

k

)(
N −K − 1

n− 2− k

)(
N − 1

n− 1

)−1
= npqQ(n− 2;K − 1, N − 2)[∆f ]

(
N − 2

n− 2

)(
N − 1

n− 1

)−1
= Q(n− 2;K − 1, N − 2)[∆f ]

n− 1

N − 1
npq.

�

Proof of Theorem 1: The upper bound follows directly from Stein’s method: To any
A ⊂ {0, . . . n} there is a unique f = fA,n,p such that

Tf(k) = 1A(k)− P (n; p)[A],

max
0≤k≤n−2

∆f(k) ≤ 1

npq
,

see Formula (10) and Lemma 1 in Ehm (1991).

For the lower bound we use the fact that for any f

Q(n;K,N)[Tf ]− P (n; p)[Tf ] ≤ 2 ‖Tf‖∞ ‖Q(n;K,N)− P (n; p)‖TV
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or by Lemma 1

‖Q(n;K,N)− P (n; p)‖TV ≥ npq
Q(n− 2;K − 1, N − 2)[∆f ]

2 ‖Tf‖∞
n− 1

N − 1
.

We choose f(k) = g(k − np) where

g(z) =


0 (|z| > 2a)
−2a− z (−2a ≤ z < −a)
z (−a ≤ z ≤ a)
2a− z (a < z ≤ 2a)

and a is a constant to be chosen later. Then g satisfies

‖g‖∞ = a,

0 ≤ zg(z) ≤ a2,
0 ≤ g(z)/z ≤ 1,

−1 ≤ ∆g(z) ≤ 1,

∆g(z) = 1 (−a ≤ z ≤ a− 1).

Arguing as on p.14 and 15 of Ehm (1991) we obtain

−npq − a2 − qa ≤ Tf(k) ≤ npq +
1

4
.

Let S have distribution Q(n−2;K−1, N−2) and set n′ = n−2, p′ = (K−1)/(N−2) and
δ = np− n′p′. Then 0 ≤ δ ≤ 1 if p ≤ 0.5 which we can assume without loss of generality.
By the properties of g we obtain

∆f(S) = g(S − n′p′ − δ + 1)− g(S − n′p′ − δ)

≥ 1− 2

a2
(S − n′p′)2.

Therefore

Q(n− 2;K − 1, N − 2)[∆f ] = E[∆f(S)] ≥ 1− 2

a2
Var(S)

= 1− 2

a2
(n− 2)p′q′

N − n
N − 3

≥ 1− 2

a2
npq.

Combining these results, we obtain

‖Q(n;K,N)− P (n; p)‖TV ≥
n− 1

N − 1

1− 2npq/a2

2(1 + a2/(npq) + a/(npq))
.

Choosing a2 = 4npq completes the proof. �

Proof of Theorem 2: We use the same function f as in the proof of Theorem 1, but we
approximate E[∆f(S)] with the central limit theorem instead of the Chebyshev inequality.
Choosing a2 = z2npq we have

E[∆f(S)] ≥ 1− 2P [|S − n′p′| ≥ z(npq)1/2] ∼ 1− 4(1− Φ(z)).
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Moreover ‖Tf‖∞ ∼ npq(1 + z2). Together we thus have

lim inf
N − 1

n− 1
‖Q(n;K,N)− P (n; p)‖TV ≥

1− 4(1− Φ(z))

2(1 + z2)
.

Choosing z = 1.38 completes the proof. �

Remarks:

1. We have tried to use different slopes for the increasing and decreasing parts of g,
but there seems to be no gain in doing so.

2. Our proof is simpler than the one in Ehm (1991) because the term 2
∥∥∆2f

∥∥
∞ in his

formula (21) is absent in our lower bound for ‖Q(n;K,N)− P (n; p)‖TV .
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