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Intrinsic autoregressions have been introduced in Künsch (1987) as the spatial analogue of
integrated autoregressive time series models. However, their definition is more complicated
than in the time series case. We discuss here in particular the nearest neighbor case. Then
the intrinsic autogregression (Z(x)) on the infinite lattice Z2 is defined by its spectrum

f(ω) = σ2(1− β cosω1 − (1− β) cosω2)
−1 (ω ∈ (−π, π]2) (1)

where σ2 > 0 and 0 < β < 1. This spectral density is not integrable at the origin which
expresses the fact that the model is not stationary. But covariances of increments can be
computed in the usual way

Cov(
∑
x

λ(x)Z(x),
∑
x

ν(x)Z(x)) = (2π)−2
∫
(−π,π]2

∑
x

λ(x)eiωx
∑
x

ν(x)e−iωxf(ω)dω. (2)

Here an increment is a finite linear combination with coefficients λ(x) summing up to zero,
that is

∑
λ(x) = 0. Then

∑
λ(x)eiωx is zero at ω = 0 and the integral exists.

Such an intrinsic autoregression satisfies

E[Z(x)|Z(x′), x′ 6= x] =
β

2
(Z(x+ e1) +Z(x− e1)) +

(1− β)

2
(Z(x+ e2) +Z(x− e2)), (3)

where e1 = (1, 0)T and e2 = (0, 1)T , if we interprete the left-hand side of (3) as the best
intrinsic predictor, see Künsch (1987, Theorem 2.2). Furthermore

E[(Z(x)− E[Z(x)|Z(x′), x′ 6= x])2] = σ2. (4)

Properties (3) and (4) are certainly more intuitive than the definition (1). Still there is
a big difference between the time series and the spatial case. A first order integrated
autoregressive process is simply a random walk, i.e. first differences are uncorrelated. In
contrast to this, the increments of the nearest-neighbor intrinsic autoregression (Z(x)),

∆jZ(x) = Z(x+ ej)− Z(x) (j = 1, 2), (5)
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have by formula (2) complicated auto- and crosscorrelations:

Cov(∆jZ(x+ x′),∆kZ(x′)) =

∫
eiωxgjk(ω)dω (6)

where
gjk(ω) = (eiωj − 1)(e−iωk − 1)f(ω). (7)

The matrix g(ω) = (gjk(ω)) is called the spectral matrix of (∆1Z,∆2Z)T .

However in two dimensions, increments have to be dependent because their sum over
closed loops must be zero:

∆1Z(x) + ∆2Z(x+ e1)−∆1Z(x+ e2)−∆2Z(x) ≡ 0.

The following result shows that apart from these constraints the increments are all uncor-
related. Thus the difference between the time series and the spatial case is due only to
the more complicated geometry. This is additional support for the claim that integrated
autoregressions are the right generalization of integrated autoregressive time series models.
The result has been suggested to me by Julian Besag. It was announced in the discussion
of Besag and Higdon (1999).

Theorem Let (Y1(x)) and (Y2(x)) be two uncorrelated Gaussian white noises with vari-
ances σ21 and σ22 respectively. Then conditionally on

S(x) = Y1(x) + Y2(x+ e1)− Y1(x+ e2)− Y2(x) ≡ 0,

(Y1(x), Y2(x))T has the same auto- and crosscorrelations as the increments of a nearest
neighbor intrinsic autoregression with

σ2 = σ21σ
2
2/(2σ

2
1 + 2σ22) and β = σ22/(σ

2
1 + σ22).

Proof The proof uses the spectral theory of multivariate stationary random fields. It is
completely analogous to the theory for stationary processes. The results we quote are for
the latter case, but could easily be extended to the former.

First we compute the spectral matrix (hij(ω)) of (Y1, Y2, S)T . Because there are 3 by 2
matrices gu such that

(Y1(x), Y2(x), S(x))T =
∑
u

gu(Y1(x− u), Y2(x− u))T

and because (Y1, Y2)
T has a diagonal spectral matrix with diagonal elements σ21 and σ22,

we obtain from formula (9.2.14) of Priestley (1981) that (hij(ω)) is equal to σ21 0 σ21(1− e−iω2)
0 σ22 −σ22(1− e−iω1)

σ21(1− eiω2) −σ22(1− eiω1) σ21|1− eiω2 |2 + σ22|1− eiω1 |2

 .
Therefore by formulae (10.3.6) and (9.2.33) of Priestley (1981), the best predictions of
(Y1) and (Y2) given (S) are

(Ŷ1(x), Ŷ2(x))T =
∑
u

cuS(x− u)
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where ∑
u

cue
−iωu =

(
h13(ω)

h23(ω)

)
h33(ω)−1.

Furthermore, by (10.3.8) and (9.2.35) of Priestley (1981), the residual process
(Y1(x)− Ŷ1(x), Y2 − Ŷ2(x)) has the spectral matrix(

h11(ω) h12(ω)
h21(ω) h22(ω)

)
−
(
h13(ω)
h23(ω)

)
h33(ω)−1 (h31(ω), h32(ω))

=

(
σ21 − σ41|1− e−iω2 |2h33(ω)−1 σ21σ

2
2(1− eiω1)(1− e−iω2)h33(ω)−1

σ21σ
2
2(1− e−iω1)(1− eiω2)h33(ω)−1 σ22 − σ42|1− eiω2 |2h33(ω)−1

)

= σ21σ
2
2h33(ω)−1

(
|1− eiω1 |2 (1− e−iω1)(1− eiω2)

(1− eiω1)(1− e−iω2) |1− eiω2 |2

)
.

This is the same matrix as (7) if we set β = σ22/(σ
2
1 + σ22) and σ2 = σ21σ

2
2/(2σ

2
1 + 2σ22)

because h33(ω) = 2σ21 + 2σ22 − 2σ21 cosω2 − 2σ22 cosω1.
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