
Tutorial (Unix Version)
S.f.Statistik, ETHZ September 24, 2008

This tutorial will give you some brief basic knowledge about R.

R is free software (copyright: GNU public license) and is available from http://stat.
ethz.ch/CRAN/. At this URL you find a comprehensive Documentation, Manual, “An
Introduction to R” (about 100 pages pdf) and a shorter introduction Contributed, “R for
Beginners / R pour les dbutants” (31 pages, english/french). This tutorial is based on the
UNIX/Emacs installation of the ETH-Seminar für Statistik. If you want to get a similar
working environment on your private UNIX/Linux computer, you have to install the free
software ESS (“emacs speaks statistics”), see http://stat.ethz.ch/ESS/. R works on
MS-Windows and Macintosh systems as well. A (german) version of this tutorial for
MS-Windows (recommended editors are Tinn-R or WinEdt) is available upon request.

Getting started with Emacs
We use R from within the Emacs editor. Emacs is a large and mighty tool, but we restrict
ourselves to minimal basics.

Emacs is started by typing emacs in the shell followed by <RETURN>, as always.

The following two keys are of particular importance: The control-key (<Ctrl> or <Strg>),
abbreviated as C-, and the meta-key (next to the space key, with a small square on it; on
many computers you can use the Alt- and/or Esc-key for this) abbreviated as M-. C-x
means: type the control-key, type shortly on x, let go the control-key; analogously M-x.

Text can be marked by use of the left mouse button in Emacs. The middle mouse button
copies a marked part of text to the current position of the cursor. A double click on the
right mouse button deletes the marked text.

Leave Emacs by selecting File / Exit Emacs in the menu.

Important keys
C-g : terminates an Emacs-command

: try, if emacs seems to do something different than what you want. . .
C-] : in case of messages concerning the minibuffer including “abort it with ‘ˆ]’ ”

: (underscore) produces <- (R assignment) in ESS
C-c C-c : terminates R-commands in ESS.

Getting started with R
To start R inside of Emacs, type M-x R, then <RETURN>. (Attention! As the whole
“world of UNIX”, Emacs is “case sensitive”: capital R is not the same as small r!). Simply
type <RETURN> when asked for the Starting Directory (at the bottom line of Emacs).

Creating and deleting objects
Type in the R-window (*R* is written on the bar below):
> x <- 2 <RETURN>

> x <RETURN>

Result: [1] 2

1

The assignment operator <- has created an object x. R is vector-oriented, so x is a
vector with one element of value 2.

Next try (all commands have to be confirmed by <RETURN>; this is omitted from now
on):
> y <- c(3,5) (c for combine)
> y
Result: [1] 3 5, a vector with two elements.

Warning: Do not use names of R-commands as object names, for example: c, t, T, F,
max,

ls() shows all objects you have already generated. To remove x, use rm(x).

R-demonstrations
Get a list of all demonstrations with demo(). For example, take a look at the graphics
demo of R: demo(graphics).

Working with an .R (script-)file
Split the Emacs-window into two buffers (File / Split Window) or create a second
emacs-frame (File / New Frame). Open the file tutorial.R via File / Open. You
are asked for the filename in the minibuffer below. (Take care that the Emacs-window is
activated. If not, move the mouse to its region and click, if necessary.) Since the file does
not already exist, a new file is created. Now you have two buffers: *R* and tutorial.R,
which you can see on the bars below the buffers.

In buffer tutorial.R, type z <- c(8,13,21) as first line and 2*z as second line. Place the
cursor on the first line and type C-c C-n. This evaluates the command on the corresponding
line in R and moves to the next line. If you don’t want to move to the next line simply
use C-c C-j. In buffer *R* you find an additional >. Repeat C-c C-n. The command on
the second line is evaluated, i.e. you get the value of 2*z.

Computing with vectors
Type fib <- c(1,1,2,3,5,z) as third line of tutorial.R (gives the first eight Fibonacci-
numbers). Evaluate the line (C-c C-n), and take a look at fib. Type 2*fib+1, fib*fib
and log(fib) as next three lines of tutorial.R. Mark all three lines with the left mouse
button and type C-c C-r. This evaluates all marked lines. Check the results. Do you
understand them?

From now on you should write (almost) all R-commands into the *.R-file to evaluate them
from there. At the end, you may save it by File / Save (current buffer). If you open
the file next time, type C-c C-l, you restore your whole work. An alternative to execute
all commands of the file (path/)tutorial.R is to execute source(”(path/)tutorial.R”)
from R.

Now create the sequence 2, 4, 6 as object s: s <- 2*(1:3), alternatively s <- seq(2,6,by=2).
Take a look at fib[3], fib[4:7], fib[s], fib[c(3,5)] and fib[-c(3,5)].

Create a vector x with 8 elements, some of which are positive, some negative. Check x > 0
and fib[x > 0].

2

Matrices: creation and computation
Create two vectors x <- 1:4 and y <- 5:8 and the matrices mat1 <- cbind(x,y) and
mat2 <- rbind(x,y,x+y) (cbind means column-bind, rbind means row-bind). Take a
look at the whole matrices mat1 and mat2 and try mat2[3,2], mat2[2,] und mat2[,1].

Computation with matrices using +, * etc. follows the same rules as computation with
vectors, namely elementwise. For the matrix product, use %*%, e.g. mat2 %*% mat1.

Data Frames
A data frame is a generalized matrix. The main difference between data frames and
matrices is that matrices need all elements to be of the same type (e.g. numeric, character),
while data frames allow every column to have another type.

Reading and looking at datasets
ASCII-data is most easily read by read.table, which generates a data frame. read.table
works also for datasets from the web. Try:
no2 <- read.table(”http://stat.ethz.ch/Teaching/Datasets/no2Basel.dat”,

header=TRUE)
You may examine the created object directly by no2. Single variables are accessible by
no2[,”NO2”]. You may take a look at the original file, in particular its first line, to
understand why R knows the name of the variable. This can be done by calling the above
URL from a web browser, e.g., Firefox or Mozilla. The parameter header=TRUE of
read.table tells R that the variable names are in the first line. no2 is still small enough,
but in general it is useful to use str first, which displays the structure and type of an
object, but not every single element: str(no2). summary(no2) displays information
about the columns of no2. summary extracts the most important information from lots
of R-objects, e.g., the results of statistical tests or regression fits.

An alternative to read.table is the command scan, which reads vectors and lists. A list
is a more general structure which may contain elements of different types and sizes, e.g.
vectors of varying lengths, data frames, sublists, etc.

Graphics
Draw a histogram of the NO2-values of the no2-data.
par(mfrow = c(1,2)) # Number of pictures one below the other [1] or side by side [2]

important to save paper!
hist(no2[,”NO2”]) # draw histogram.
Now compute the regression line of the NO2-content against temperature and show it
graphically next to the histogram:
lm.T <- lm(NO2 ∼ Temp, data = no2) # fits regression.
plot(NO2 ∼ Temp, data = no2)
abline(lm.T, col = 4, lty = 2) # col: colour; lty=2: dashed line
summary(lm.T) # regression summary (details later)

title(”Titel xy”) adds a title to your graphic and dev.print() prints the graphic.

Note that there is a distinction between “high-level”- (such as plot, hist) and “low-level”-
graphics commands (such as abline). The former make up a new graphic, while the latter
add something to existing graphics.

3

Getting R-help
If you want to know the details about commands, you can use the R-online help. For ex-
ample, help(plot) explains the plot-command. You can execute the example at the end of
the help page by example(plot). Note that it is a good idea to execute par(ask=TRUE)
first, to give you time to observe the graphics. You may check help(par) to understand
this.

An alternative to the help-command: help.start() starts the html-help of R in a web
browser.

If you look for help about some topic without knowing the command names, e.g., about
histograms, help.search(”histogram”) delivers a list of commands which correspond
to the keyword. In parantheses you find the name of the package to which the command
belongs. Most commands used by us in the beginning are contained in the package “base”,
which is automatically loaded. Other packages must be loaded by library(Libname),
before their commands and help pages are accessible.

Ending R
You can save your work by saving the file of commands tutorial.R (see above; of course it is
useful to use new files for new projects, e.g., exercise1.R, exercise2.R, . . .). The commands
have to be evaluated again to restore your work. R-objects may be saved also by save
and write or by creating a new output file and use of the copy, cut and paste facilities of
Emacs (see above, or via Edit in the menu bar).

The command q() terminates the R-session. Answer n to the question
Save workspace image? [y/n/c] or use q(”no”).

More to come
R can be used to create complex programs and functions. You may take a look at
help(for) for control commands or at help(function) for creating functions.

4

