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o Y € R" response
o X € R™P co-variables

Linear model:

Y = XB%+¢, e ~N,(0,1)

Lasso

B = arg min{nv _ xm|§/n+2x||ﬁ||1}
BERP



Notation

Active set:
So={j: BY#0}

Sparsity:
So = ’50‘

Coefficients of a vector f € RPonaset S C {1,...,p}:

1 )

6 %é S

ﬁs = 0 %% S
Bj—&-l )

0 «—¢S



Notation

Active set:

So:=14j: 5})7&0}

Sparsity:
So .— ’50‘

Coefficients of a vector f € RPonaset S C {1,...,p}:
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Note:
{XBs: p€RP} s the linear space spanned by {X;};cs
{XpB_s: B €RP} s the linear space spanned by {Xj};¢s

Definition compatibility constant:

(L, $) o= min{ XX 3-slf/n: [3slh =1, 13-l < ]

_
“cone condition”

with
oSc{l,...,p} s:=|S]
oL >1 a ‘stretching factor”



Lemma
[vdG 2007, Bickel et al. 2009, Koltchinskii et al. 2011, ...]

Let Ao := y/2log(2p/cr) and A > Ao.

Then with probability at least 1 — «

2

5 0y(2 5 Q0 A%so
IX(B8 = B)2/n+ Aoll B 5||1/C§$2(L,50)'

where At
L:=C 0
A— Ao




We will now show that the compatibility constant is related to
canonical correlation ...
. in the ¢;-world




A note about distances and inner products

Let a and b be two vectors in R”.
Suppose ||a|]2 = ||b]|» = 1.
Write
op:=a’b (= cos(d))
oc:=a—b»b
Then [[cll3 = [|all3 + [|b]3 — 2276 = 2(1 — p) =: ¢?




Canonical correlation in the ¢5-world

The canonical correlation between Xs and X_s is
Prn(S) = max{ (X-5)T(X5e) 5 [1Xslle = 1. X5l = 1.

We let (22 (5) = 2(1 - ﬁcan(s))'

can



Canonical correlation: (in R*)

P(ane y ¢/\/2 q)/\/z
v
2 : Vy Vx

cos(0)=p

Y={Xp_s: BERP} X ={Xps: R}



Note:
Assume (WLG) XJ Xs =1 and X' X s = 1.
Then

pean(S) = maX{(Xﬁs)T(Xﬁs) sl =1, 18]l = 1}-

Moreover then

(ggan(s) = 2(1_ﬁcan(5))
- min{HXﬁs — XBsll3: [IBsll =1, [|B=sll2 = 1}
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Canonical correlation and exact recovery

X given n X p matrix with p < n.
Observed: 9 := X3°.
Let
B =min{||B|.: Xp = f°}.
Then

Qgcan(SO) >0 = ﬁ* = BO




Canonical correlation in the ¢;-world

Note:
max{||Bs||3: ||Bs||53 =1} = s|where s :=|S].
T T
o 0
Notation
For a vector v € R™: ||v||,2:==v'v/n abuse of
notation
[ ]

Definition The compatibility constant is

2(5) = min{ s| X5 - X5l |0elh =1, -5l <1}.

TV
{1 instead of £»




Compatibility constant: (in R?)

qAS(S) = ¢(1,S) for the case S = {1}



Basis Pursuit

X given n X p matrix with p > n.
Observed: 9 := X3°.
Basis Pursuit [Chen, Donoho and Saunders (1998) |:

B :=min{||B].: XB = f°}.

Exact recovery

$(So) > 0= 5" =g°




Effective sparsity

Note:
“cone ci)ildition”
(L S) min{SHXﬁH% B =1, sl < L}
[ IXBIR
mm{s” All, |I5—s||1§L||Bs|I1}
1552
=
s 15512 }
- = max o < L|p
s {WH% 185l < LlBss

[2(L, S) := effective sparsity

We call [/(L, S) an

O1\|| - ||,-comparison
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General norms

Let © be a norm on R”
Examples:

{1-norm

sorted ¢;-norm
variational norms

nuclear norm The

Q—world

Definition The triangle property holds at 3° if 3 semi-norms
Q" and Q~_such that
Q(8°) - Q(8) < Q7 (B - %) —Q(B)

Example: ¢1-norm

15°l: = 118112 < 1185, = Bl = [|B=ss I




Definition The Q-effective sparsity is

(Q*(8))?

2 0y .__
PG = max{ EEE

2 (9) < LQ*(@}.

“cone condition”

We call (L, 8°) an|Q\|| - || -comparison

Example: ¢;-norm

Notation
For stretching factor L = 1:

F(5%) =1(1,5)



Exact recovery using general norms

Let

B = min{Q(ﬁ) . XB = fo}.

Then

[(8°) <00 = p*=p°




Q-exact recovery results
and
oracle results for Q-penalized least squares

involve the effective sparsity

F2(L, 8%



Problem setting

Question
when is (L, %) < 00?
or

how large is it?



Notation
Q=" +Q

Example: ¢1-norm
Q=0=|"1

Q7 /lr-comparison

— Qr(8) | p}
Yo 1= max{ T geR

Example: ¢1-norm

Note

@) =1 8la=1/%
@<L T Qf) <L+l

cone condition



~ study of restricted eigenvalue

mind X613 151 = 1. 92(5) < m

Notation ¥ := X7 X/n Gram matrix
Note: As
IXBlI; = 8726
the minimal eigenvalue of 3 is
min{ X313 111}
which is Z€ro when p > n.

twith M := Ly,
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Random matrix

X
X =1 : n X p data matrix
Xn
Model:
Rows X; = (X 1,...,X,) i.i.d. copies of a random vector
Xo € RP,

Empirical inner product matrix Y = XTX/n.
Theoretical inner product matrix Yo :=EX :]EXOTXO.

We will provide lower bounds for

min{fﬂiﬁ C BTEB =1, Q) < /\/I}.



A simple bound for /;-case

Let © be the ¢1-norm.
We have

max{

Hence

4TS - Zo)ﬁ‘ 18l < M} < M?[$ — Sl

min{ﬁTiﬁ: 18]l1 < M, BTEe8 = 1} > 1— M?||E — Zo)|oo-
Asymptotics

|£=%o]loc = Op(+/Iog p/n) ~ requiring M = o((n/ log p)*)

We will improve this to

M = o(+/n/ log p)



Definition
Let m > 2.

The random vector Xy € RP is m-th order isotropic
with constant C

if for all 3 € RP with BT¥y3 = 1 it holds that

P(| X8| > t) < (C/t)" V t > 0.




Example

Suppose X ~ N,(0, Xo)

Then V m

Xo is m-th order isotropic with universal constant C




Let €, ...,€, be a Rademacher sequence independent of X.
Let Q. be the dual norm of 2.

Theorem 1 [vdG, 2016]

Suppose that for some m > 2 the random vector Xy is weakly

m-th order isotropic.
Then i = ii:

it BEQ.(X"€e)/nx M= o(1)
U
i min{ﬁTiﬁ C BTEB =1, QB) < M} > 1 — op(1).



Relation with oracle inequalities
Consider? Q = || - ||1
Lemma [vdG 2007, Bickel et al. 2009, .. ]

Let® \g := +/2log(2p/a) and A > ).

Then with probability at least 1 — «

2

5 . A
IX(3=3)3/n+ Qo 18— FOlli/c < %0

*(L, So)
~Q.(XTe)/n ~ 1 —
op(1)
where At
L:=C 0
A— Ao

2Similar relations for general norms
SP([[X Telloo/n > Xo) <



Convergence of the compatibility constant

Theoretical compatibility constant:

GR(L, ) = min{SoﬂTZoﬁ Nl =1, [Bs ]l < L}.

Empirical compatibility constant:

(L, So) = min{soﬁTiﬁz 1Bsilli = 1, 18-s, ]l < L}.

By the theorem,
under isotropy and assuming || X "¢€||s/n = Op(1/log p/n):

ﬁ N °<é) = (L, So) = #(L, So)(1 — (1))



Convergence of the compatibility constant
Theoretical compatibility constant:
AL S0 = min{ 57508 sl =1, 1o < L],

Empirical compatibility constant:

(L, So) = min{soﬁTiﬁz 1Bsilli = 1, 18-s, ]l < L}.

By the theorem,
under isotropy and assuming || X "¢€||s/n = Op(1/log p/n):

S0 n ~
[ L h
(%(L‘SO) O(|ogp) :>¢ ( 750) >>OW p



Let Amin(X0) be the smallest eigenvalue of ¥,.

Corollary
Since ¢*(L, So) > Amin(Xo) we have under the conditions of

the previous

Amin(Xo) >0 = (52(L, So) > 0 whp



Bounds for the compatibility constant using the
transfer principle

Transfer principle (Oliveira[2013])
Let A be a symmetric p X p matrix with A;; > 0 for all

Jje{1,...,p}.
Let s € {2,...,p} and suppose that for all S C {1,...,p}
with cardinality |S| = s one has

BsAfBs > 0 V B eRP.
Then

BTAB > — mjaXAjJHﬁHf/(S - 1) V B eR.



WLG: diag(Xo) = I:



Normalized design
Define
R = XTX/n, )N(J =X;/5;, j=1,...,p.

Define the (empirical) compatibility constant for normalized
design

22

S s) = min{soﬁwa: 1Bl = 1, 18]l < L}.

The (theoretical) adaptive restricted eigenvalue is defined as

KL, Sp) = min{ﬁTZoﬁ s e =1, [B-slh < L\/_}



Note

¢2(L7 50) Z KS(L7 50) Z /\min(ZO)



Theorem [vdG and Muro, 2014]
Suppose that for some m > 2 the random vector X, is weakly
m-th order isotropic. Then for some ¢ > 1

(el So)(L— 0x(1))

> = 5L S) >

S0 — 0 n
k3(cL,So) \logp c



Theorem [vdG and Muro, 2014]
Suppose that for some m > 2 the random vector Xy is weakly
m-th order isotropic. Then for some ¢ > 1

a2
0 :o( L ) = ¢ (L,S0) > 0 whp.
log p



Conclusion of this

With normalized design one can show that the compatibility
constant ¢?(L, S) stays away from zero assuming only higher
order isotropy and no further (moment) conditions.
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Definition

The random vector Xy € RP satisfies the small ball property
with constants C; > 0 and G, > 0 if for all § € RP with
BT3B =1 it holds that

P(|Xp| > 1/G) > 1/G.



It can be shown that for appropriate constants one has (for
m > 2)

Xo Gaussian =- m-th order isotropy = small ball property.

E.g. see [Mendelson & Koltchinskii (2013)].



Bounds using the small ball property

Theorem [Lecué and Mendelson, 2015]
Suppose
o Xp satisfies the small ball property

o max; 6; = 1+ Op(+/logp/n).

Then for a constant ¢ > 11 = ii:

i: M:o( L )
log p

I
i min{ﬁTiﬁ: 182 =1, ||5||1§’V’} Zl_fop(l)
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Conclusion

the compatibility constant
stays away from zero
when sy = o(4/n/ log n)+
distributional assumptions
or when sy = o(n/ log n)+
stronger

distributional assumptions

for norms more general than /; the results go through under
isotropy conditions but not (yet) under the small ball property






Higher order isotropy

Suppose the graph of X; has a directed acyclic graph (DAG)
structure that is, satisfying (after an appropriate permutation
of the indexes) the structural equations model

Xo1 = €01, (1)
j-1
Xoj =Y XouBij+ ey j=2,....p
k=1

where {€o;}7_; is a martingale difference array for the
filtration {J;}7-,.

We assume:
- Xoj is Fj-measurable, j =1,...,p
- w? = var(eo;) = Evar(Xj|Fj_1) exists for all ;.



Lemma Assume the structural equations model.. Assume in
addition that for some constant C and for all A € R

E(exp[)\eo7j/wj]|}"j_1) < exp[)\2C2/2],j = ].7 e, P

Then Xy is sub-Gaussian with constant C.



More generally let {.7-}}1‘-’:0 be a filtration and for j =1,...,p,
let Xo; be Fj-measurable and V; be Fj_;-measurable and
satisfying for some m > 2,

ax [[Vjlm = pim < c0.

Lemma Suppose that for some constant K and all j
k' .
E(Xo, 1 75-1) = 0, B(|Xo,[“|Fj-1) < K 2VE k=23,

We have for all 2 < my < m and all ||u|, =1

2 3mr 241 mg/2+1 1
il < /27 (B2 EDN T (sr(met)

m — mg m — mg




