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◦ Y ∈ Rn response
◦ X ∈ Rn×p co-variables

Linear model:

Y = Xβ0 + ε, ε ∼ Nn(0, I )

Lasso

β̂ = arg min
β∈Rp

{
‖Y − Xβ‖2

2/n + 2λ‖β‖1

}



Notation

Active set:
S0 := {j : β0

j 6= 0}
Sparsity:
s0 := |S0|

Coefficients of a vector β ∈ Rp on a set S ⊂ {1, . . . , p}:

βS :=



β1
...
0
0
βj+1

...
0



←∈ S
...

←/∈ S
←/∈ S
←∈ S

...
←/∈ S



Notation

Active set:
S0 := {j : β0

j 6= 0}
Sparsity:
s0 := |S0|
Coefficients of a vector β ∈ Rp on a set S ⊂ {1, . . . , p}:

βS :=



β1
...
0
0
βj+1

...
0



←∈ S →
...

←/∈ S →
←/∈ S →
←∈ S →

...
←/∈ S →



0
...

βj−1

βj
0
...
βp


=: β−S



Note:
{XβS : β ∈ Rp} is the linear space spanned by {Xj}j∈S
{Xβ−S : β ∈ Rp} is the linear space spanned by {Xj}j /∈S
Definition compatibility constant:

φ̂2(L, S) := min

{
s‖XβS−Xβ−S‖2

2/n : ‖βS‖1 = 1, ‖β−S‖1 ≤ L︸ ︷︷ ︸
“cone condition”

}

with
◦ S ⊂ {1, . . . , p}, s := |S |
◦ L ≥ 1 a “stretching factor”



Lemma
[vdG 2007, Bickel et al. 2009, Koltchinskii et al. 2011, ...]
Let λ0 :=

√
2 log(2p/α) and λ > λ0.

Then with probability at least 1− α

‖X (β̂ − β0)‖2
2/n + λ0‖β̂ − β0‖1/c ≤ λ2s0

φ̂2(L, S0)
.

where

L := C
λ + λ0

λ− λ0
.

tu



We will now show that the compatibility constant is related to
canonical correlation ...

... in the `1-world



A note about distances and inner products

Let a and b be two vectors in Rn.
Suppose ‖a‖2 = ‖b‖2 = 1.
Write
◦ ρ := aTb (= cos(θ))
◦ c := a − b

Then ‖c‖2
2 = ‖a‖2

2 + ‖b‖2
2 − 2aTb = 2(1− ρ) =: φ2



Canonical correlation in the `2-world

The canonical correlation between XS and X−S is

ρ̂can(S) := max

{
(Xβ−S)T (XβS) : ‖XβS‖2 = 1, ‖Xβ−S‖2 = 1

}
.

We let φ̂2
can(S) = 2(1− ρ̂can(S)).



Canonical correlation: (in R4)

f/√2f/√2

cos(q)=r

q

Y = {Xβ−S : β ∈ Rp} X = {XβS : β ∈ Rp}



Note:
Assume (WLG) XT

S XS = I and XT
−SX−S = I .

Then

ρ̂can(S) = max

{
(Xβ−S)T (XβS) : ‖βS‖2 = 1, ‖β−S‖2 = 1

}
.

Moreover then

φ̂2
can(S) = 2(1− ρ̂can(S))

= min

{
‖XβS − Xβ−S‖2

2 : ‖βS‖2 = 1, ‖β−S‖2 = 1

}
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Canonical correlation and exact recovery

X given n × p matrix with p ≤ n.

Observed: f 0 := Xβ0.

Let
β∗ := min{‖β‖2 : Xβ = f 0}.

Then

φ̂can(S0) > 0 ⇒ β∗ = β0



Canonical correlation in the `1-world

Note:

max{‖βS‖2
1 : ‖βS‖2

2 = 1} = s where s := |S |.
↑
`1

↑
`2

Notation
For a vector v ∈ Rn: ‖v‖n2 := vTv/n abuse of

notation

•
Definition The compatibility constant is

φ̂2(S) := min

{
s‖XβS − Xβ−S‖2

n : ‖βS‖1 = 1, ‖β−S‖1 ≤ 1︸ ︷︷ ︸
`1 instead of `2

}
.



Compatibility constant: (in R2)

X

X

X2 p

1

, . . . , 

φ̂(1, {1})

1

φ̂(S) = φ̂(1, S) for the case S = {1}



Basis Pursuit

X given n × p matrix with p � n.

Observed: f 0 := Xβ0.
Basis Pursuit [Chen, Donoho and Saunders (1998) ]:

β∗ := min{‖β‖1 : Xβ = f 0}.

Exact recovery

φ̂(S0) > 0⇒ β∗ = β0



Effective sparsity
Note:

φ̂2(L, S) = min

{
s‖Xβ‖2

n :

“cone condition”︷ ︸︸ ︷
‖βS‖1 = 1, ‖β−S‖1 ≤ L

}
= min

{
s
‖Xβ‖2

n

‖βS‖2
1

: ‖β−S‖1 ≤ L‖βS‖1

}

⇒

s

φ̂2(L, S)
= max

{ ‖βS‖2
1

‖Xβ‖2
n

: ‖β−S‖1 ≤ L‖βS‖1

}
:= Γ̂2(L, S) := effective sparsity

We call Γ̂(L, S) an `1\‖ · ‖n-comparison
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General norms

Let Ω be a norm on Rp

Examples:
`1-norm
sorted `1-norm
variational norms
nuclear norm The

Ω−world

Definition The triangle property holds at β0 if ∃ semi-norms
Ω+ and Ω− such that

Ω(β0)− Ω(β) ≤ Ω+(β − β0)− Ω−(β)
.

Example: `1-norm

‖β0‖1 − ‖β‖1 ≤ ‖βS0 − β0‖1 − ‖β−S0‖1



Definition The Ω-effective sparsity is

Γ̂2(L, β0) := max

{
(Ω+(β))2

‖Xβ‖2
n

: Ω−(β) ≤ LΩ+(β)︸ ︷︷ ︸
“cone condition”

}
.

We call Γ̂(L, β0) an Ω\‖ · ‖n-comparison

Example: `1-norm

Γ̂2(L, β0) =
s0

φ̂2(L, S0)

Notation
For stretching factor L = 1:

Γ̂(β0) := Γ̂(1, β0)



Exact recovery using general norms

Let

β∗ := min

{
Ω(β) : Xβ = f 0

}
.

Then

Γ̂(β0) <∞ ⇒ β∗ = β0



Ω-exact recovery results
and

oracle results for Ω-penalized least squares

involve the effective sparsity
Γ̂2(L, β0)



Problem setting

Question

when is Γ̂(L, β0) <∞?

or

how large is it?



Notation
Ω := Ω+ + Ω−

Example: `1-norm
Ω = Ω = ‖ · ‖1

Ω+/`2-comparison

γ0 := max

{
Ω+(β)

‖β‖2
: β ∈ Rp

}
Example: `1-norm

γ2
0 =

1

s0

Note

Ω+(β) = 1

Ω−(β) ≤ L
⇒ ‖β‖2 ≥ 1/γ0

Ω(β) ≤ L + 1

cone condition



 study of restricted eigenvalue

min

{
‖Xβ‖2

n : ‖β‖2 = 1, Ω(β) ≤ M

}
1

Notation Σ̂ := XTX/n Gram matrix

Note: As

‖Xβ‖2
n = βT Σ̂β

the minimal eigenvalue of Σ̂ is

min

{
‖Xβ‖2

n : ‖β‖2 = 1

}
which is zero when p > n.

1with M := Lγ0
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Random matrix

X :=

X1
...

Xn

 n × p data matrix

Model:
Rows Xi = (Xi ,1, . . . ,Xi ,p) i.i.d. copies of a random vector
X0 ∈ Rp.

Empirical inner product matrix Σ̂ := XTX/n.
Theoretical inner product matrix Σ0 := IEΣ̂ = IEXT

0 X0.

We will provide lower bounds for

min

{
βT Σ̂β : βTΣ0β = 1, Ω(β) ≤ M

}
.



A simple bound for `1-case
Let Ω be the `1-norm.
We have

max

{∣∣∣∣βT (Σ̂− Σ0)β

∣∣∣∣ : ‖β‖1 ≤ M

}
≤ M2‖Σ̂− Σ0‖∞.

Hence

min

{
βT Σ̂β : ‖β‖1 ≤ M , βTΣ0β = 1

}
≥ 1−M2‖Σ̂−Σ0‖∞.

Asymptotics

‖Σ̂−Σ0‖∞ = OP(
√

log p/n)  requiring M = o((n/ log p)
1
4 )

We will improve this to

M = o(
√

n/ log p)



Definition
Let m ≥ 2.
The random vector X0 ∈ Rp is m-th order isotropic
with constant C
if for all β ∈ Rp with βTΣ0β = 1 it holds that

P(|X0β| > t) ≤ (C/t)m ∀ t > 0.



Example
Suppose X0 ∼ Np(0,Σ0)
Then ∀ m
X0 is m-th order isotropic with universal constant C



Let ε1, . . . , εn be a Rademacher sequence independent of X .
Let Ω∗ be the dual norm of Ω.
Theorem 1 [vdG, 2016]
Suppose that for some m > 2 the random vector X0 is weakly
m-th order isotropic.
Then i ⇒ ii :

i : IEΩ∗(XT ε)/n ×M = o(1)

⇓

ii : min

{
βT Σ̂β : βTΣ0β = 1, Ω(β) ≤ M

}
≥ 1− oP(1).



Relation with oracle inequalities
Consider2 Ω = ‖ · ‖1

Lemma [vdG 2007, Bickel et al. 2009, ...]

Let3 λ0 :=
√

2 log(2p/α) and λ > λ0.
Then with probability at least 1− α

‖X (β̂ − β0)‖2
2/n + λ0︸︷︷︸

∼Ω∗(XT ε)/n

‖β̂ − β0‖1/c︸ ︷︷ ︸
∼M̂

≤ λ2s0

φ2(L, S0)︸ ︷︷ ︸
oP(1)

.

where

L := C
λ + λ0

λ− λ0
.

tu
2Similar relations for general norms
3P(‖XT ε‖∞/n ≥ λ0) ≤ α



Convergence of the compatibility constant

Theoretical compatibility constant:

φ2
0(L, S0) := min

{
s0β

TΣ0β : ‖βS0‖1 = 1, ‖β−S0‖1 ≤ L

}
.

Empirical compatibility constant:

φ̂2(L, S0) := min

{
s0β

T Σ̂β : ‖βS0‖1 = 1, ‖β−S0‖1 ≤ L

}
.

By the theorem,
under isotropy and assuming ‖XT ε‖∞/n = OP(

√
log p/n):

s0

φ2
0(L, S0)

= o

(
n

log p

)
⇒ φ̂2(L, S0) = φ2

0(L, S0)(1− oP(1)).



Convergence of the compatibility constant

Theoretical compatibility constant:

φ2
0(L, S0) := min

{
s0β

TΣ0β : ‖βS0‖1 = 1, ‖β−S0‖1 ≤ L

}
.

Empirical compatibility constant:

φ̂2(L, S0) := min

{
s0β

T Σ̂β : ‖βS0‖1 = 1, ‖β−S0‖1 ≤ L

}
.

By the theorem,
under isotropy and assuming ‖XT ε‖∞/n = OP(

√
log p/n):

s0

φ2
0(L, S0)

= o

(
n

log p

)
⇒ φ̂2(L, S0)� 0 whp



Let Λmin(Σ0) be the smallest eigenvalue of Σ0.
Corollary
Since φ2(L, S0) ≥ Λmin(Σ0) we have under the conditions of
the previous

Λmin(Σ0)� 0 ⇒ φ̂2(L, S0)� 0 whp



Bounds for the compatibility constant using the

transfer principle

Transfer principle (Oliveira[2013])
Let A be a symmetric p × p matrix with Aj ,j ≥ 0 for all
j ∈ {1, . . . , p}.
Let s ∈ {2, . . . , p} and suppose that for all S ⊂ {1, . . . , p}
with cardinality |S | = s one has

βT
S AβS ≥ 0 ∀ β ∈ Rp.

Then

βTAβ ≥ −max
j

Aj ,j‖β‖2
1/(s − 1) ∀ β ∈ Rp.



WLG: diag(Σ0) = I :

Σ0 =


1 σ1,2 · · · σ1,p

σ1,2 1 · · · σ2,p
...

...
. . .

...
σ1,p σ2,p · · · 1





Normalized design

Define

R̂ := X̃T X̃/n, X̃j := Xj/σ̂j , j = 1, . . . , p.

Define the (empirical) compatibility constant for normalized
design

ˆ̃φ
2

(L, S0) := min

{
s0β

T R̂β : ‖βS0‖1 = 1, ‖β−S0‖1 ≤ L

}
.

The (theoretical) adaptive restricted eigenvalue is defined as

κ2
0(L, S0) := min

{
βTΣ0β : ‖βS0‖2 = 1, ‖β−S0‖1 ≤ L

√
s0

}
.



Note

φ2(L, S0) ≥ κ2
0(L, S0) ≥ Λmin(Σ0)



Theorem [vdG and Muro, 2014]
Suppose that for some m > 2 the random vector X0 is weakly
m-th order isotropic. Then for some c > 1

s0

κ2
0(cL, S0)

= o

(
n

log p

)
⇒ ˆ̃φ

2

(L, S0) ≥ κ2
0(cL, S0)(1− oP(1))

c
.



Theorem [vdG and Muro, 2014]
Suppose that for some m > 2 the random vector X0 is weakly
m-th order isotropic. Then for some c > 1

s0

κ2
0(cL, S0)

= o

(
n

log p

)
⇒ ˆ̃φ

2

(L, S0)� 0 whp.



Conclusion of this

With normalized design one can show that the compatibility
constant φ̃2(L, S) stays away from zero assuming only higher
order isotropy and no further (moment) conditions.
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Definition
The random vector X0 ∈ Rp satisfies the small ball property
with constants C1 > 0 and C2 > 0 if for all β ∈ Rp with
βTΣ0β = 1 it holds that

P(|X0β| ≥ 1/C1) ≥ 1/C2.



It can be shown that for appropriate constants one has (for
m > 2)

X0 Gaussian ⇒ m-th order isotropy⇒ small ball property.

E.g. see [Mendelson & Koltchinskii (2013)].



Bounds using the small ball property

Theorem [Lecué and Mendelson, 2015]
Suppose
◦ X0 satisfies the small ball property
◦ maxj σ̂j = 1 +OP(

√
log p/n).

Then for a constant c > 1 i ⇒ ii :

i : M = o

(
n

log p

)
⇓

ii : min

{
βT Σ̂β : ‖β‖2 = 1, ‖β‖1 ≤ M

}
≥ 1− oP(1)

c
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Conclusion

the compatibility constant
stays away from zero
when s0 = o(

√
n/ log n)+

distributional assumptions
or when s0 = o(n/ log n)+
stronger
distributional assumptions

C
on

cl
u

si
on

for norms more general than `1 the results go through under
isotropy conditions but not (yet) under the small ball property





Higher order isotropy

Suppose the graph of X0 has a directed acyclic graph (DAG)
structure that is, satisfying (after an appropriate permutation
of the indexes) the structural equations model

X0,1 = ε0,1, (1)

X0,j =

j−1∑
k=1

X0,kβk,j + ε0,j , j = 2, . . . , p

where {ε0,j}pj=1 is a martingale difference array for the

filtration {Fj}p−1
j=0 .

We assume:
- X0,j is Fj -measurable, j = 1, . . . , p
- ω2

j := var(ε0,j) = IEvar(Xj |Fj−1) exists for all j .



Lemma Assume the structural equations model.. Assume in
addition that for some constant C and for all λ ∈ R

IE(exp[λε0,j/ωj ]|Fj−1) ≤ exp[λ2C 2/2], j = 1, . . . , p.

Then X0 is sub-Gaussian with constant C .



More generally let {Fj}pj=0 be a filtration and for j = 1, . . . , p,
let X0,j be Fj -measurable and Vj be Fj−1-measurable and
satisfying for some m > 2,

max
1≤j≤p

‖Vj‖m := µm <∞.

Lemma Suppose that for some constant K and all j

IE(X0,j |Fj−1) = 0, IE(|X0,j |k |Fj−1) ≤ k!

2
K k−2V 2

j , k = 2, 3, . . . .

We have for all 2 < m0 < m and all ‖u‖2 = 1

‖X0u‖m0 ≤
√

2m

m −m0

(
3mΓ(m0/2 + 1)

m −m0

)m0/2+1

µm+

(
3Γ(m0+1)

)1/m0

K .


