High-dimensional statistics: a triptych Sara van de Geer

Panel II: Asymptotic normality and CRLB's

Panel III : Lower bounds for restricted eigenvalues

Panel I: Oracle inequalities

Panel III: Lower bounds for restricted eigenvalues

Panel I: Oracle inequalities

Panel II: Asymptotic normality and CRLB's

Panel III: Lower bounds for restricted eigenvalues

High-dimensional statistics: a triptych

Sara van de Geer

$$
\text { July 15, } 2016
$$

Panel III:

Lower bounds for restricted eigenvalues

Joint work with:
Andreas Elsener, Alan Muro, Jana Janková, Benjamin Stucky

- $Y \in \mathbb{R}^{n}$ response
- $X \in \mathbb{R}^{n \times p}$ co-variables

Linear model:

$$
Y=X \beta^{0}+\epsilon, \epsilon \sim \mathcal{N}_{n}(0, I)
$$

Lasso

$$
\hat{\beta}=\arg \min _{\beta \in \mathbb{R}^{p}}\left\{\|Y-X \beta\|_{2}^{2} / n+2 \lambda\|\beta\|_{1}\right\}
$$

Notation

Active set:
$S_{0}:=\left\{j: \beta_{j}^{0} \neq 0\right\}$
Sparsity:
$s_{0}:=\left|S_{0}\right|$
Coefficients of a vector $\beta \in \mathbb{R}^{p}$ on a set $S \subset\{1, \ldots, p\}$:

$$
\beta_{S}:=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
0 \\
0 \\
\beta_{j+1} \\
\vdots \\
0
\end{array}\right) \quad \leftarrow \in S
$$

Notation

Active set:
$S_{0}:=\left\{j: \beta_{j}^{0} \neq 0\right\}$
Sparsity:
$s_{0}:=\left|S_{0}\right|$
Coefficients of a vector $\beta \in \mathbb{R}^{p}$ on a set $S \subset\{1, \ldots, p\}$:

$$
\beta_{S}:=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
0 \\
0 \\
\beta_{j+1} \\
\vdots \\
0
\end{array}\right) \quad \leftarrow \nleftarrow S \rightarrow \quad\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \nleftarrow S \rightarrow \\
\beta_{j-1} \\
\leftarrow \in S \rightarrow \\
\beta_{j} \\
0 \\
\vdots \\
\beta_{p}
\end{array}\right)=: \beta_{-S}
$$

Note:
$\left\{X \beta_{S}: \beta \in \mathbb{R}^{p}\right\} \quad$ is the linear space spanned by $\left\{X_{j}\right\}_{j \in S}$ $\left\{X \beta_{-S}: \beta \in \mathbb{R}^{p}\right\} \quad$ is the linear space spanned by $\left\{X_{j}\right\}_{j \notin S}$

Definition compatibility constant:
$\hat{\phi}^{2}(L, S):=\min \{s\left\|X \beta_{S}-X \beta_{-S}\right\|_{2}^{2} / n: \underbrace{\left\|\beta_{S}\right\|_{1}=1,\left\|\beta_{-S}\right\|_{1} \leq L}_{\text {"cone condition" }}\}$
with

- $S \subset\{1, \ldots, p\}, s:=|S|$
- $L \geq 1$ a "stretching factor"

Lemma

[vdG 2007, Bickel et al. 2009, Koltchinskii et al. 2011, ...]
Let $\lambda_{0}:=\sqrt{2 \log (2 p / \alpha)}$ and $\lambda>\lambda_{0}$.
Then with probability at least $1-\alpha$

$$
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n+\lambda_{0}\left\|\hat{\beta}-\beta^{0}\right\|_{1} / c \leq \frac{\lambda^{2} s_{0}}{\hat{\phi}^{2}\left(L, S_{0}\right)}
$$

where

$$
L:=C \frac{\lambda+\lambda_{0}}{\lambda-\lambda_{0}} .
$$

We will now show that the compatibility constant is related to canonical correlation ...
\ldots in the ℓ_{1}-world

A note about distances and inner products
Let a and b be two vectors in \mathbb{R}^{n}.
Suppose $\|a\|_{2}=\|b\|_{2}=1$.
Write

- $\rho:=a^{T} b(=\cos (\theta))$

○ $c:=a-b$
Then $\|c\|_{2}^{2}=\|a\|_{2}^{2}+\|b\|_{2}^{2}-2 a^{T} b=2(1-\rho)=: \phi^{2}$

$$
c=\mathbf{a}-\mathbf{b}
$$

Canonical correlation in the ℓ_{2}-world

The canonical correlation between X_{S} and X_{-S} is
$\hat{\rho}_{\text {can }}(S):=\max \left\{\left(X \beta_{-S}\right)^{T}\left(X \beta_{S}\right):\left\|X \beta_{S}\right\|_{2}=1,\left\|X \beta_{-S}\right\|_{2}=1\right\}$.
We let $\hat{\phi}_{\text {can }}^{2}(S)=2\left(1-\hat{\rho}_{\text {can }}(S)\right)$.

Canonical correlation: (in \mathbb{R}^{4})

Note:
Assume (WLG) $X_{S}^{T} X_{S}=I$ and $X_{-S}^{T} X_{-S}=I$.
Then

$$
\hat{\rho}_{\mathrm{can}}(S)=\max \left\{\left(X \beta_{-S}\right)^{T}\left(X \beta_{S}\right):\left\|\beta_{S}\right\|_{2}=1,\left\|\beta_{-S}\right\|_{2}=1\right\}
$$

Moreover then

$$
\begin{aligned}
\hat{\phi}_{\mathrm{can}}^{2}(S) & =2\left(1-\hat{\rho}_{\text {can }}(S)\right) \\
& =\min \left\{\left\|X \beta_{S}-X \beta_{-S}\right\|_{2}^{2}:\left\|\beta_{S}\right\|_{2}=1,\left\|\beta_{-S}\right\|_{2}=1\right\}
\end{aligned}
$$

An oracle
 inequality for the Lasso

Concepts:

Compatibility constant
Effective sparsity
Isotropy
Small ball property

Lower bounds for
restricted eigenvalues

Canonical correlation and exact recovery

X given $n \times p$ matrix with $p \leq n$.
Observed: $f^{0}:=X \beta^{0}$.
Let

$$
\beta^{*}:=\min \left\{\|\beta\|_{2}: X \beta=f^{0}\right\} .
$$

Then

$$
\hat{\phi}_{\mathrm{can}}\left(S_{0}\right)>0 \Rightarrow \beta^{*}=\beta^{0}
$$

Canonical correlation in the ℓ_{1}-world

Note:

$$
\begin{array}{|cc|}
\hline \max \left\{\left\|\beta_{S}\right\|_{1}^{2}:\right. & \left.\left\|\beta_{S}\right\|_{2}^{2}=1\right\}=s \\
\uparrow & \uparrow \\
\ell_{1} & \ell_{2}
\end{array} \text { where } s:=|S| .
$$

Notation
For a vector $v \in R^{n}:\|v\|_{n}{ }^{2}:=v^{T} v / n$

Definition The compatibility constant is

$$
\hat{\phi}^{2}(S):=\min \{s\left\|X \beta_{S}-X \beta_{-S}\right\|_{n}^{2}: \underbrace{\left\|\beta_{S}\right\|_{1}=1,\left\|\beta_{-S}\right\|_{1} \leq 1}_{\ell_{1-} \text { instead of } \ell_{2}}\}
$$

Compatibility constant: (in \mathbb{R}^{2})

$\hat{\phi}(S)=\hat{\phi}(1, S)$ for the case $S=\{1\}$

Basis Pursuit

X given $n \times p$ matrix with $p \gg n$.
Observed: $f^{0}:=X \beta^{0}$.
Basis Pursuit [Chen, Donoho and Saunders (1998)]:

$$
\beta^{*}:=\min \left\{\|\beta\|_{1}: X \beta=f^{0}\right\}
$$

Exact recovery

$$
\hat{\phi}\left(S_{0}\right)>0 \Rightarrow \beta^{*}=\beta^{0}
$$

Effective sparsity

Note:

$$
\begin{aligned}
& \hat{\phi}^{2}(L, S)= \min \{s\|X \beta\|_{n}^{2}: \overbrace{\left\|\beta_{S}\right\|_{1}=1,\left\|\beta_{-S}\right\|_{1} \leq L}^{\text {"cone condition" }}\} \\
&= \min \left\{s \frac{\|X \beta\|_{n}^{2}}{\left\|\beta_{S}\right\|_{1}^{2}}:\left\|\beta_{-S}\right\|_{1} \leq L\left\|\beta_{S}\right\|_{1}\right\} \\
& \Rightarrow \\
& \frac{s}{\hat{\phi}^{2}(L, S)}= \max \left\{\frac{\left\|\beta_{S}\right\|_{1}^{2}}{\|X \beta\|_{n}^{2}}:\left\|\beta_{-S}\right\|_{1} \leq L\left\|\beta_{S}\right\|_{1}\right\} \\
&:=\hat{\Gamma}^{2}(L, S):=\text { effective sparsity }
\end{aligned}
$$

We call $\hat{\Gamma}(L, S)$ an $\ell_{1} \backslash\|\cdot\|_{n}$-comparison

An oracle
 inequality for the Lasso

Concepts:

Compatibility constant
Effective sparsity
Isotropy
Small ball property

Lower bounds for
restricted eigenvalues

General norms

Let Ω be a norm on \mathbb{R}^{p}
Examples:
ℓ_{1}-norm
sorted ℓ_{1}-norm
variational norms
nuclear norm

Definition The triangle property holds at β^{0} if \exists semi-norms Ω^{+}and Ω^{-}such that

$$
\Omega\left(\beta^{0}\right)-\Omega(\beta) \leq \Omega^{+}\left(\beta-\beta^{0}\right)-\Omega^{-}(\beta)
$$

Example: ℓ_{1}-norm

$$
\left\|\beta^{0}\right\|_{1}-\|\beta\|_{1} \leq\left\|\beta_{S_{0}}-\beta^{0}\right\|_{1}-\left\|\beta_{-S_{0}}\right\|_{1}
$$

Definition The Ω-effective sparsity is

$$
\hat{\Gamma}^{2}\left(L, \beta^{0}\right):=\max \{\frac{\left(\Omega^{+}(\beta)\right)^{2}}{\|X \beta\|_{n}^{2}}: \underbrace{\Omega^{-}(\beta) \leq L \Omega^{+}(\beta)}_{\text {"cone condition" }}\} .
$$

We call $\hat{\Gamma}\left(L, \beta^{0}\right)$ an $\Omega \backslash\|\cdot\|_{n}$-comparison
Example: ℓ_{1}-norm

$$
\hat{\Gamma}^{2}\left(L, \beta^{0}\right)=\frac{s_{0}}{\hat{\phi}^{2}\left(L, S_{0}\right)}
$$

Notation
For stretching factor $L=1$:

$$
\hat{\Gamma}\left(\beta^{0}\right):=\hat{\Gamma}\left(1, \beta^{0}\right)
$$

Exact recovery using general norms

Let

$$
\beta^{*}:=\min \left\{\Omega(\beta): X \beta=f^{0}\right\} .
$$

Then

$$
\hat{\Gamma}\left(\beta^{0}\right)<\infty \Rightarrow \beta^{*}=\beta^{0}
$$

Ω-exact recovery results

 and oracle results for Ω-penalized least squares involve the effective sparsity $\hat{\Gamma}^{2}\left(L, \beta^{0}\right)$
Problem setting

Question

$$
\begin{gathered}
\text { when is } \hat{\Gamma}\left(L, \beta^{0}\right)<\infty ? \\
\text { or } \\
\text { how large is it? }
\end{gathered}
$$

Notation

$$
\underline{\Omega}:=\Omega^{+}+\Omega^{-}
$$

Example: ℓ_{1}-norm

$$
\underline{\Omega}=\Omega=\|\cdot\|_{1}
$$

Ω^{+} / ℓ_{2}-comparison

$$
\gamma_{0}:=\max \left\{\frac{\Omega^{+}(\beta)}{\|\beta\|_{2}}: \beta \in \mathbb{R}^{p}\right\}
$$

Example: ℓ_{1}-norm

$$
\gamma_{0}^{2}=\frac{1}{s_{0}}
$$

Note

$$
\begin{gathered}
\Omega^{+}(\beta)=1 \quad \Rightarrow \quad\|\beta\|_{2} \geq 1 / \gamma_{0} \\
\Omega^{-}(\beta) \leq L \quad \underline{\Omega}(\beta) \leq L+1 \\
\text { cone condition }
\end{gathered}
$$

\rightsquigarrow study of restricted eigenvalue

$$
\min \left\{\|X \beta\|_{n}^{2}:\|\beta\|_{2}=1, \underline{\Omega}(\beta) \leq M\right\}^{1}
$$

Notation $\quad \hat{\Sigma}:=X^{T} X / n$ Gram matrix
Note: As

$$
\|X \beta\|_{n}^{2}=\beta^{T} \hat{\Sigma} \beta
$$

the minimal eigenvalue of $\hat{\Sigma}$ is

$$
\min \left\{\|X \beta\|_{n}^{2}:\|\beta\|_{2}=1\right\}
$$

which is zero when $p>n$.

$$
{ }^{1} \text { with } M:=L \gamma_{0}
$$

An oracle
 inequality for the Lasso

Concepts:

Compatibility constant
Effective sparsity
Isotropy
Small ball property

Lower bounds for restricted eigenvalues

Random matrix

$$
X:=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right) \quad n \times p \text { data matrix }
$$

Model:
Rows $X_{i}=\left(X_{i, 1}, \ldots, X_{i, p}\right)$ i.i.d. copies of a random vector $X_{0} \in \mathbb{R}^{p}$.
Empirical inner product matrix $\quad \hat{\Sigma}:=X^{T} X / n$. Theoretical inner product matrix $\quad \Sigma_{0}:=\mathbb{E} \hat{\Sigma}=\mathbb{E} X_{0}{ }^{T} X_{0}$.

We will provide lower bounds for

$$
\min \left\{\beta^{T} \hat{\Sigma} \beta: \beta^{T} \Sigma_{0} \beta=1, \Omega(\beta) \leq M\right\}
$$

A simple bound for ℓ_{1}-case

Let Ω be the ℓ_{1}-norm.
We have

$$
\max \left\{\left|\beta^{T}\left(\hat{\Sigma}-\Sigma_{0}\right) \beta\right|:\|\beta\|_{1} \leq M\right\} \leq M^{2}\left\|\hat{\Sigma}-\Sigma_{0}\right\|_{\infty}
$$

Hence
$\min \left\{\beta^{T} \hat{\Sigma} \beta:\|\beta\|_{1} \leq M, \beta^{T} \Sigma_{0} \beta=1\right\} \geq 1-M^{2}\left\|\hat{\Sigma}-\Sigma_{0}\right\|_{\infty}$.
Asymptotics
$\left\|\hat{\Sigma}-\Sigma_{0}\right\|_{\infty}=\mathcal{O}_{\mathbb{P}}(\sqrt{\log p / n}) \rightsquigarrow$ requiring $M=o\left((n / \log p)^{\frac{1}{4}}\right)$
We will improve this to

$$
M=o(\sqrt{n / \log p})
$$

Definition

Let $m \geq 2$.
The random vector $X_{0} \in \mathbb{R}^{p}$ is m-th order isotropic with constant C
if for all $\beta \in \mathbb{R}^{p}$ with $\beta^{T} \Sigma_{0} \beta=1$ it holds that

$$
\mathbb{P}\left(\left|X_{0} \beta\right|>t\right) \leq(C / t)^{m} \forall t>0
$$

Example

Suppose $X_{0} \sim \mathcal{N}_{p}\left(0, \Sigma_{0}\right)$
Then $\forall m$
X_{0} is m-th order isotropic with universal constant C

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be a Rademacher sequence independent of X. Let Ω_{*} be the dual norm of Ω.
Theorem 1 [vdG, 2016]
Suppose that for some $m>2$ the random vector X_{0} is weakly m-th order isotropic.
Then $i \Rightarrow i$:

$$
\begin{gathered}
i: \mathbb{E} \Omega_{*}\left(X^{T} \epsilon\right) / n \times M=o(1) \\
\Downarrow \\
\text { ii }: \min \left\{\beta^{T} \hat{\Sigma} \beta: \beta^{T} \Sigma_{0} \beta=1, \Omega(\beta) \leq M\right\} \geq 1-o_{\mathbb{P}}(1)
\end{gathered}
$$

Relation with oracle inequalities

Consider ${ }^{2} \Omega=\|\cdot\|_{1}$
Lemma [vdG 2007, Bickel et al. 2009, ...]
Let $^{3} \lambda_{0}:=\sqrt{2 \log (2 p / \alpha)}$ and $\lambda>\lambda_{0}$.
Then with probability at least $1-\alpha$

$$
\left\|X\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n+\underbrace{\lambda_{0}}_{\sim \Omega_{*}\left(X^{\top} \epsilon\right) / n} \underbrace{\left\|\hat{\beta}-\beta^{0}\right\|_{1} / c}_{\sim \hat{M}} \leq \underbrace{\frac{\lambda^{2} s_{0}}{\phi^{2}\left(L, S_{0}\right)}}_{o_{\mathbb{P}}(1)} .
$$

where

$$
L:=C \frac{\lambda+\lambda_{0}}{\lambda-\lambda_{0}} .
$$

${ }^{2}$ Similar relations for general norms

$$
{ }^{3} \mathbb{P}\left(\left\|X^{\top} \epsilon\right\|_{\infty} / n \geq \lambda_{0}\right) \leq \alpha
$$

Convergence of the compatibility constant

Theoretical compatibility constant:

$$
\phi_{0}^{2}\left(L, S_{0}\right):=\min \left\{s_{0} \beta^{T} \Sigma_{0} \beta:\left\|\beta_{S_{0}}\right\|_{1}=1,\left\|\beta_{-S_{0}}\right\|_{1} \leq L\right\}
$$

Empirical compatibility constant:

$$
\hat{\phi}^{2}\left(L, S_{0}\right):=\min \left\{s_{0} \beta^{T} \hat{\Sigma} \beta:\left\|\beta_{s_{0}}\right\|_{1}=1,\left\|\beta_{-s_{0}}\right\|_{1} \leq L\right\}
$$

By the theorem, under isotropy and assuming $\left\|X^{T} \epsilon\right\|_{\infty} / n=\mathcal{O}_{\mathbb{P}}(\sqrt{\log p / n})$:

$$
\frac{s_{0}}{\phi_{0}^{2}\left(L, S_{0}\right)}=o\left(\frac{n}{\log p}\right) \Rightarrow \hat{\phi}^{2}\left(L, S_{0}\right)=\phi_{0}^{2}\left(L, S_{0}\right)\left(1-o_{\mathbb{P}}(1)\right)
$$

Convergence of the compatibility constant

Theoretical compatibility constant:

$$
\phi_{0}^{2}\left(L, S_{0}\right):=\min \left\{s_{0} \beta^{T} \Sigma_{0} \beta:\left\|\beta_{S_{0}}\right\|_{1}=1,\left\|\beta_{-S_{0}}\right\|_{1} \leq L\right\}
$$

Empirical compatibility constant:

$$
\hat{\phi}^{2}\left(L, S_{0}\right):=\min \left\{s_{0} \beta^{T} \hat{\Sigma} \beta:\left\|\beta_{s_{0}}\right\|_{1}=1,\left\|\beta_{-s_{0}}\right\|_{1} \leq L\right\}
$$

By the theorem, under isotropy and assuming $\left\|X^{T} \epsilon\right\|_{\infty} / n=\mathcal{O}_{\mathbb{P}}(\sqrt{\log p / n})$:

$$
\frac{s_{0}}{\phi_{0}^{2}\left(L, S_{0}\right)}=o\left(\frac{n}{\log p}\right) \Rightarrow \hat{\phi}^{2}\left(L, S_{0}\right) \gg 0 \mathrm{whp}
$$

Let $\Lambda_{\min }\left(\Sigma_{0}\right)$ be the smallest eigenvalue of Σ_{0}.
Corollary
Since $\phi^{2}\left(L, S_{0}\right) \geq \Lambda_{\min }\left(\Sigma_{0}\right)$ we have under the conditions of the previous

$$
\Lambda_{\min }\left(\Sigma_{0}\right) \gg 0 \Rightarrow \hat{\phi}^{2}\left(L, S_{0}\right) \gg 0 \text { whp }
$$

Bounds for the compatibility constant using the

 transfer principleTransfer principle (Oliveira[2013])
Let A be a symmetric $p \times p$ matrix with $A_{j, j} \geq 0$ for all $j \in\{1, \ldots, p\}$.
Let $s \in\{2, \ldots, p\}$ and suppose that for all $S \subset\{1, \ldots, p\}$ with cardinality $|S|=s$ one has

$$
\beta_{S}^{T} A \beta_{S} \geq 0
$$

$$
\forall \beta \in \mathbb{R}^{p}
$$

Then

$$
\beta^{T} A \beta \geq-\max _{j} A_{j, j}\|\beta\|_{1}^{2} /(s-1) \quad \forall \beta \in \mathbb{R}^{p}
$$

WLG: $\operatorname{diag}\left(\Sigma_{0}\right)=I:$

$$
\Sigma_{0}=\left(\begin{array}{cccc}
1 & \sigma_{1,2} & \cdots & \sigma_{1, p} \\
\sigma_{1,2} & 1 & \cdots & \sigma_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1, p} & \sigma_{2, p} & \cdots & 1
\end{array}\right)
$$

Normalized design

Define

$$
\hat{R}:=\tilde{X}^{T} \tilde{X} / n, \quad \tilde{X}_{j}:=X_{j} / \hat{\sigma}_{j}, j=1, \ldots, p
$$

Define the (empirical) compatibility constant for normalized design

$$
\hat{\tilde{\phi}}^{2}\left(L, S_{0}\right):=\min \left\{s_{0} \beta^{T} \hat{R} \beta:\left\|\beta_{s_{0}}\right\|_{1}=1,\left\|\beta_{-s_{0}}\right\|_{1} \leq L\right\}
$$

The (theoretical) adaptive restricted eigenvalue is defined as

$$
\kappa_{0}^{2}\left(L, S_{0}\right):=\min \left\{\beta^{T} \Sigma_{0} \beta:\left\|\beta_{S_{0}}\right\|_{2}=1,\left\|\beta_{-S_{0}}\right\|_{1} \leq L \sqrt{s_{0}}\right\} .
$$

Note

$$
\phi^{2}\left(L, S_{0}\right) \geq \kappa_{0}^{2}\left(L, S_{0}\right) \geq \Lambda_{\min }\left(\Sigma_{0}\right)
$$

Theorem [vdG and Muro, 2014]
Suppose that for some $m>2$ the random vector X_{0} is weakly m-th order isotropic. Then for some $c>1$

$$
\frac{s_{0}}{\kappa_{0}^{2}\left(c L, S_{0}\right)}=o\left(\frac{n}{\log p}\right) \Rightarrow \hat{\tilde{\phi}}^{2}\left(L, S_{0}\right) \geq \frac{\kappa_{0}^{2}\left(c L, S_{0}\right)\left(1-o_{\mathbb{P}}(1)\right)}{c} .
$$

Theorem [vdG and Muro, 2014] Suppose that for some $m>2$ the random vector X_{0} is weakly m-th order isotropic. Then for some $c>1$

$$
\frac{s_{0}}{\kappa_{0}^{2}\left(c L, S_{0}\right)}=o\left(\frac{n}{\log p}\right) \Rightarrow \hat{\tilde{\phi}}^{2}\left(L, S_{0}\right) \gg 0 \text { whp. }
$$

Conclusion of this

With normalized design one can show that the compatibility constant $\tilde{\phi}^{2}(L, S)$ stays away from zero assuming only higher order isotropy and no further (moment) conditions.

An oracle
 inequality for the Lasso

Concepts:

Compatibility constant
Effective sparsity
Isotropy
Small ball property

Lower bounds for restricted eigenvalues

Definition

The random vector $X_{0} \in \mathbb{R}^{p}$ satisfies the small ball property with constants $C_{1}>0$ and $C_{2}>0$ if for all $\beta \in \mathbb{R}^{p}$ with $\beta^{T} \Sigma_{0} \beta=1$ it holds that

$$
\mathbb{P}\left(\left|X_{0} \beta\right| \geq 1 / C_{1}\right) \geq 1 / C_{2} .
$$

It can be shown that for appropriate constants one has (for $m>2$)
X_{0} Gaussian $\Rightarrow m$-th order isotropy \Rightarrow small ball property.
E.g. see [Mendelson \& Koltchinskii (2013)].

Bounds using the small ball property

Theorem [Lecué and Mendelson, 2015]
Suppose

- X_{0} satisfies the small ball property
- $\max _{j} \hat{\sigma}_{j}=1+\mathcal{O}_{\mathbb{P}}(\sqrt{\log p / n})$.

Then for a constant $c>1 i \Rightarrow i i$:

$$
\begin{gathered}
i: M=o\left(\frac{n}{\log p}\right) \\
\\
\Downarrow \\
i i: \min \left\{\beta^{T} \hat{\Sigma} \beta:\|\beta\|_{2}=1,\|\beta\|_{1} \leq M\right\} \geq \frac{1-o_{\mathbb{P}}(1)}{c}
\end{gathered}
$$

An oracle
 inequality for the Lasso

Concepts:

Compatibility constant
Effective sparsity
Isotropy
Small ball property

Lower bounds for restricted eigenvalues

Conclusion

the compatibility constant
stays away from zero
when $s_{0}=o(\sqrt{n / \log n})+$ distributional assumptions
or when $s_{0}=o(n / \log n)+$
stronger
distributional assumptions

for norms more general than ℓ_{1} the results go through under isotropy conditions but not (yet) under the small ball property

Higher order isotropy

Suppose the graph of X_{0} has a directed acyclic graph (DAG) structure that is, satisfying (after an appropriate permutation of the indexes) the structural equations model

$$
\begin{gather*}
X_{0,1}=\epsilon_{0,1}, \tag{1}\\
X_{0, j}=\sum_{k=1}^{j-1} X_{0, k} \beta_{k, j}+\epsilon_{0, j}, j=2, \ldots, p
\end{gather*}
$$

where $\left\{\epsilon_{0, j}\right\}_{j=1}^{p}$ is a martingale difference array for the filtration $\left\{\mathcal{F}_{j}\right\}_{j=0}^{p-1}$.
We assume:

- $X_{0, j}$ is \mathcal{F}_{j}-measurable, $j=1, \ldots, p$
$-\omega_{j}^{2}:=\operatorname{var}\left(\epsilon_{0, j}\right)=\mathbb{E} \operatorname{var}\left(X_{j} \mid \mathcal{F}_{j-1}\right)$ exists for all j.

Lemma Assume the structural equations model.. Assume in addition that for some constant C and for all $\lambda \in \mathbb{R}$

$$
\mathbb{E}\left(\exp \left[\lambda \epsilon_{0, j} / \omega_{j}\right] \mid \mathcal{F}_{j-1}\right) \leq \exp \left[\lambda^{2} C^{2} / 2\right], j=1, \ldots, p
$$

Then X_{0} is sub-Gaussian with constant C.

More generally let $\left\{\mathcal{F}_{j}\right\}_{j=0}^{p}$ be a filtration and for $j=1, \ldots, p$, let $X_{0, j}$ be \mathcal{F}_{j}-measurable and V_{j} be \mathcal{F}_{j-1}-measurable and satisfying for some $m>2$,

$$
\max _{1 \leq j \leq p}\left\|V_{j}\right\|_{m}:=\mu_{m}<\infty
$$

Lemma Suppose that for some constant K and all j
$\mathbb{E}\left(X_{0, j} \mid \mathcal{F}_{j-1}\right)=0, \mathbb{E}\left(\left|X_{0, j}\right|^{k} \mid \mathcal{F}_{j-1}\right) \leq \frac{k!}{2} K^{k-2} V_{j}^{2}, k=2,3, \ldots$
We have for all $2<m_{0}<m$ and all $\|u\|_{2}=1$
$\left\|X_{0} u\right\|_{m_{0}} \leq \sqrt{\frac{2 m}{m-m_{0}}}\left(\frac{3 m \Gamma\left(m_{0} / 2+1\right)}{m-m_{0}}\right)^{m_{0} / 2+1} \mu_{m}+\left(3 \Gamma\left(m_{0}+1\right)\right)^{1,}$

